1.Expression and properties of potassium channels in human mammary epithelial cell line MCF10A and its possible role in proliferation.
Jia LIU ; Shuang FENG ; Lei ZHANG ; Zheng WU ; Qian CHEN ; Wei CHENG ; Shi-Qiang WANG ; Wei ZOU
Acta Physiologica Sinica 2010;62(3):203-209
Voltage-dependent potassium channels (Kv) are involved in proliferation and transformation in mammary epithelial cells. In previous studies, several groups have detected various potassium channels in breast cancer cells, and they assumed that potassium channels are related to the development of breast carcinoma, although the precise mechanisms are still unknown. We have previously reported that 4-aminopyridine (4-AP), one kind of potassium channel (K(+) channel) blocker, could affect the proliferation of MCF10A cells. The aim of the present study is to explore the expression and properties of K(+) channels in human mammary epithelial cells (MCF10A) and whether Kv channels are required for the proliferation of MCF10A cell. Electrophysiological, MTT analysis, PCR and Western blot methods were used to identify a K(+) conductance which is involved in tumorigenesis and not yet be described in MCF10A cells. A voltage-dependent, outward rectification and 4-AP-sensitive K(+) current was observed in these cells. The perfusion of 5 mmol/L 4-AP significantly decreased the amplitude of Kv current from (912.5+/-0.6) pA to (275+/-0.8) pA (n=5, P<0.01), when cells were recorded using 800 ms voltage steps from a holding potential of -60 mV to voltage ranging from -60 mV to +60 mV. PCR analysis demonstrated that Kv1.1, Kv1.2, Kv1.3, and Kv1.5 were all expressed in MCF10A and MCF7 cells. Furthermore, the expression of Kv1.5 was much higher in MCF10A than that in MCF7. Inhibitory effect of 4-AP on cell proliferation was dosage-dependent. Incubation with 5 mmol/L 4-AP reduced MCF10A cell proliferation to 25.29% in 48 h. Western blot analysis showed the activation of ERK1/2 which related to cell proliferation was enhanced, while p38 activation was decreased by 4-AP treatment for 10 min. These data provided the first evidence of the Kv channels expression in MCF10A cell and 4-AP could inhibit the proliferation of MCF10A through blocking the potassium channels, and the mechanism may be related to regulating the activity of different members of cell proliferation signaling pathway of MEK/ERK.
4-Aminopyridine
;
pharmacology
;
Cell Line
;
Cell Proliferation
;
Epithelial Cells
;
physiology
;
Humans
;
Potassium Channel Blockers
;
pharmacology
;
Potassium Channels, Voltage-Gated
;
physiology
2.High throughput screening method of potassium channel regulators.
Ya-ping PAN ; Xiang-hua XU ; Xiao-liang WANG
Acta Pharmaceutica Sinica 2004;39(2):85-88
AIMTo discover new regulators of potassium channel, an in vitro assay based on DiBAC4 (3) to determine the fluorescence was established for high throughput screening.
METHODSA cell-based 96-well format fluorescence assay using DiBAC4 (3) in cultured PC12 cells was described. Cells were loaded with 5 mumol.L-1 DiBAC4 (3) and incubated at 37 degrees C for 30 min before adding KCl or several known potassium channel regulators. The cellular DiBAC4 (3) fluorescence responce was then detected. The fluorescence changes can be used to evaluate membrane potential changes, which are determined mainly by potassium channels.
RESULTSExtracellular high K(+)-induced depolarization and several potassium channel blockers including 4-AP, TEA, E-4031, glibenclamide, quinidine and nifedipine all evoked increases in DiBAC4 (3) fluorescence response. The potassium channel opener, cromakalim, evoked decrease in DiBAC4 (3) fluorescence response. The fluorescence changes of 4-AP, TEA, glibenclamide, nifedipine and cromakalim were in a concentration-dependent manner. In 76 compounds screened by using the established DiBAC4 (3)-based assay, 9 compounds were found to change the fluorescence dose-dependently. Patch clamp technique is needed to further testify and screen their actions on potassium currents.
CONCLUSIONThe DiBAC4 (3)-based assay is easily operated, economical and repeatable. So, it can be performed by high throughput screening for potassium channel regulators.
4-Aminopyridine ; pharmacology ; Animals ; Barbiturates ; chemistry ; Calcium Channel Blockers ; pharmacology ; Cromakalim ; pharmacology ; Isoxazoles ; chemistry ; Membrane Potentials ; drug effects ; Nifedipine ; pharmacology ; PC12 Cells ; Patch-Clamp Techniques ; Piperidines ; pharmacology ; Potassium Channel Blockers ; pharmacology ; Potassium Channels ; drug effects ; Pyridines ; pharmacology ; Quinidine ; pharmacology ; Rats
3.Ca(2+)-dependent potassium channels play important roles in regulatory volume decrease in human nasopharyngeal carcinoma cells.
Shu-Tong HE ; Lin-Yan ZHU ; Lin-Jie YANG ; Si-Chun HE ; Jian-Wen MAO ; Li-Wei WANG ; Li-Xin CHEN
Acta Physiologica Sinica 2009;61(5):485-492
It has been shown that cell volume regulation mechanisms play important roles in various cell functions. We demonstrated previously that volume-activated chloride channels were involved in cell volume regulation. The present study aimed to clarify the roles of various types of potassium channels in regulatory volume decrease (RVD) induced by hypotonic challenges in human nasopharyngeal carcinoma cells (CNE-2Z cells). The whole-cell patch clamp technique was used to record hypotonic challenge-induced potassium currents. During current recordings, cells were held at 0 mV and stepped to +/-46 and +/-92 mV, repeatedly. The cell volume was computed from cell diameters. The changes of cell volume were monitored and analyzed by the time-lapse imaging technique. The results showed that the exposure to 160 mOsm/L hypotonic solution caused the cells to swell by (144.5+/-4.2)%, activated a potassium current (59.2 pA/pF+/-13.3 pA/pF at 92 mV), and induced RVD. Cell volume was recovered from hypotonic challenge-induced swelling by (48.9+/-4.6)% after 20 min. The potassium current (at 92 mV) and RVD were inhibited by the calcium-dependent potassium channel blocker, clotrimazole (100 mumol/L), by (98.5+/-2.8)% and (89.3+/-4.9)%, respectively. Depletion of extracellular calcium prevented the activation of the hypotonic challenge-induced potassium current and inhibited the process of RVD. The voltage-gated potassium channel blocker, 4-AP (5 mmol/L), partially inhibited the hypotonic challenge-activated potassium currents by (66.6+/-5.3)% (at 92 mV). These results suggest that the Ca(2+)-dependent potassium channel is the main component of volume-activated potassium channels and plays an important role in volume regulation of CNE-2Z cells. The voltage-gated potassium channels may also contribute in part to the formation of the volume-activated potassium current.
Carcinoma
;
Cell Line, Tumor
;
Cell Size
;
Clotrimazole
;
pharmacology
;
Humans
;
Hypotonic Solutions
;
pharmacology
;
Nasopharyngeal Neoplasms
;
pathology
;
Patch-Clamp Techniques
;
Potassium Channel Blockers
;
pharmacology
;
Potassium Channels, Calcium-Activated
;
metabolism
4.Regulation of Antiarrhythmic Drug Propafenone Effects on the C-type KV1.4 Potassium Channel by PHo and K+.
Zhiquan WANG ; Shimin WANG ; Jianjun LI ; Xuejun JIANG ; Neng WANG
Journal of Korean Medical Science 2009;24(1):84-91
The effects of the antiarrhythmic drug propafenone at c-type kv1.4 channels in Xenopus laevis oocytes were studied with the two-electrode voltage-clamp techinique. Defolliculated oocytes (stage V-VI) were injected with transcribed cRNAs of ferret Kv1.4 delta N channels. During recording, oocytes were continuously perfused with control solution or propafenone. Propafenone decreased the currents during voltage steps. The block was voltage-, use-, and concentration- dependent manners. The block was increased with positive going potentials. The voltage dependence of block could be fitted with the sum of monoexponential and a linear function. Propafenone accelerated the inactivate of current during the voltage step. The concentration of half-maximal block (IC(50)) was 121 micrometer/L. With high, normal, and low extracellular potassium concentrations, the changes of IC(50) value had no significant statistical differences. The block of propafenone was PH- dependent in high-, normal- and low- extracellular potassium concentrations. Acidification of the extracellular solution to PH 6.0 increased the IC50 values to 463 micrometer/L, alkalization to PH 8.0 reduced it to 58 micrometer/L. The results suggest that propafenone blocks the kv1.4 delta N channel in the open state and give some hints for an intracellular site of action.
Animals
;
Anti-Arrhythmia Agents/*pharmacology
;
Hydrogen-Ion Concentration
;
Inhibitory Concentration 50
;
Kv1.4 Potassium Channel/*antagonists & inhibitors/metabolism
;
Oocytes/drug effects/metabolism
;
Patch-Clamp Techniques
;
Potassium/*metabolism
;
Potassium Channel Blockers/*pharmacology
;
Propafenone/*pharmacology
;
Xenopus laevis
5.Effect of cAMP on short-circuit current in isolated human ciliary body.
Ren-yi WU ; Ning MA ; Qian-qian HU
Chinese Medical Journal 2013;126(14):2694-2698
BACKGROUNDCyclic adenosine monophosphate (cAMP) could activate chloride channels in bovine ciliary body and trigger an increase in the ionic current (short-circuit current, Isc) across the ciliary processes in pigs. The purpose of this study was to investigate how cAMP modulates Isc in isolated human ciliary processes and the possible involvement of chloride transport across the tissue in cAMP-induced Isc change.
METHODSIn an Ussing-type chamber system, the Isc changes induced by the cAMP analogue 8-bromo-cAMP and an adenylyl cyclase activator forskolin in isolated human ciliary processes were assessed. The involvement of Cl(-) component in the bath solution was investigated. The effect of Cl(-) channel (10 µmol/L niflumic acid and 1 mmol/L 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS)), K(+) channel (10 mmol/L tetraethylammonium chloride (TEA)), or Na(+) channel blockers (1 mmol/L amiloride) on 8-bromo-cAMP-induced Isc change was also studied.
RESULTSDose-dependently, 8-bromo-cAMP (10 nmol/L-30 µmol/L) or forskolin (10 nmol/L-3 µmol/L) increased Isc across the ciliary processes with an increase in negative potential difference on the non-pigmented epithelium (NPE) side of the tissue. Isc increase induced by 8-bromo-cAMP was more pronounced when the drug was applied on the NPE side than on the pigmented epithelium side. When the tissue was bathed in low Cl(-) solutions, the Isc increase was significantly inhibited. Finally, niflumic acid and DIDS, but not TEA or amiloride, significantly prevented the Isc increase induced by 8-bromo-cAMP.
CONCLUSIONScAMP stimulates stroma-to-aqueous anionic transport in isolated human ciliary processes. Chloride is likely to be among the ions, the transportation of which across the tissue is triggered by cAMP, suggesting the potential role of cAMP in the process of aqueous humor formation in human eyes.
8-Bromo Cyclic Adenosine Monophosphate ; pharmacology ; Chloride Channels ; antagonists & inhibitors ; Ciliary Body ; drug effects ; physiology ; Colforsin ; pharmacology ; Cyclic AMP ; physiology ; Humans ; In Vitro Techniques ; Potassium Channel Blockers ; pharmacology ; Sodium Channel Blockers ; pharmacology
6.Blockade of the human ether-a-go-go-related gene potassium channel by ketanserin.
Dan-Na TU ; An-Ruo ZOU ; Yu-Hua LIAO ; Yi-Mei DU ; Xian-Pei WANG ; Lu LI
Acta Physiologica Sinica 2008;60(4):525-534
In the present study, we investigated the inhibitory action of ketanserin on wild-type (WT) and Y652 mutant human ether-a-go-go-related gene (HERG) potassium channels expressed in Xenopus oocytes and the effects of changing the channel molecular determinants characteristics on the blockade with and without ketanserin intervention using standard two-microelectrode voltage-clamp techniques. Point mutations were introduced into HERG gene (Y652A and Y652R) and subcloned into the pSP64 plasmid expression vector. Complementary RNAs for injection into oocytes were prepared with SP6 Cap-Scribe after linearization of the expression construct with EcoR I. Clampfit 9.2 software was employed for data collection and analysis. Origin 6.0 software was used to fit the data, calculate time constants and plot histograms. The results showed that ketanserin blocked WT HERG currents in voltage- and concentration-dependent manner and showed minimal tonic blockade of HERG current evaluated by the envelope of tails test. The IC50 value was (0.38+/-0.04) micromol/L for WT HERG potassium channel. The peaks of the I-V relationship for HERG channel suggested a negative shift in the voltage-dependence of activation after using ketanserin, whose midpoint of activation values (V1/2) were (-16.59+/-1.01) mV (control) vs (-20.59+/-0.87) mV (ketanserin) at 0.1 micromol/L, (-22.39+/-0.94) mV at 1 micromol/L, (-23.51+/-0.91) mV at 10 micromol/L, respectively (P<0.05, n=6). Characteristics of blockade were consistent with an open-state channel blockade, because the extent and rate of onset of blockade was voltage-dependent, increasing at more potentials even in the condition of leftward shift of activation curve. Meanwhile, in the different depolarization duration, the fractional blockade of end-pulse step current and peak tail current at 100 ms duration was significantly lower than that at 400 ms and 700 ms, which indicated that following the channel activation fractional blockade was enhanced by the activated channels. Ketanserin could also modulate the inactivation of HERG channel, which shifted the voltage-dependence of WT HERG channel inactivation curve from (-51.71+/-2.15) mV to (-80.76+/-14.98) mV (P<0.05, n=4). The S6 mutation, Y652A and Y652R, significantly attenuated the blockade by ketanserin. The IC50 value were (27.13+/-9.40) micromol/L and (20.20+/-2.80) micromol/L, respectively, increased by approximately 72-fold for Y652A and 53-fold for Y652R compared to that of WT HERG channel blockade [(0.38+/-0.04) micromol/L]. However, between the inhibitory effects of Y652A and Y652R, there was no significant difference. In conclusion, ketanserin blocks WT HERG currents in voltage- and concentration-dependent manner and preferentially blocks open-state HERG channels. Tyr-652 is one of the critical residues in the ketanserin-binding sites.
Animals
;
Ether-A-Go-Go Potassium Channels
;
antagonists & inhibitors
;
Humans
;
Ketanserin
;
pharmacology
;
Mutation
;
Oocytes
;
Patch-Clamp Techniques
;
Potassium Channel Blockers
;
pharmacology
;
Xenopus
7.Properties of cholinergic receptor-mediated ion channels on type I vestibular hair cells of guinea pigs.
Yun ZHU ; Wei-Jia KONG ; Jiao XIA ; Yu ZHANG ; Hua-Mao CHENG ; Chang-Kai GUO
Acta Physiologica Sinica 2008;60(3):375-381
To confirm the existence of cholinergic receptors on type I vestibular hair cells (VHCs I) of guinea pigs and to study the properties of the cholinergic receptor-mediated ion channels on VHCs I, electrophysiological responses of isolated VHCs I to external ACh were examined by means of whole-cell patch-clamp recordings. The results showed that 7.5% (21/279) VHCs I were found to be sensitive to ACh (10-1000 μmol/L). ACh generated an outward current in a steady, slow, dose-dependent [EC(50) was (63.78±2.31) μmol/L] and voltage-independent manner. In standard extracellular solution, ACh at the concentration of 100 μmol/L triggered a calcium-dependent current of (170±15) pA at holding potential of -50 mV, and the current amplitude could be depressed by extracellularly added calcium-dependent potassium channel antagonist TEA. The time interval for the next complete activation of ACh-sensitive current was no less than 1 min. The ion channels did not shut off even when they were exposed to ACh for an extended period of time (8 min). The results suggest that dose-dependent, calcium-dependent and voltage-independent cholinergic receptors were located on a few of the VHCs I investibular epithelium of guinea pigs. The cholinergic receptors did not show desensitization to ACh. This work reveals the existence of efferent neurotransmitter receptors on VHCs I and helps in understanding the function of vestibular efferent nervous system, and may provide some useful information on guiding the clinical rehabilitative treatment of vertigo.
Acetylcholine
;
pharmacology
;
Animals
;
Guinea Pigs
;
Hair Cells, Vestibular
;
physiology
;
Membrane Potentials
;
Patch-Clamp Techniques
;
Potassium Channel Blockers
;
pharmacology
;
Potassium Channels, Calcium-Activated
;
physiology
;
Receptors, Cholinergic
;
physiology
8.Effects of midazolam on hERG K+ channel.
Sheng-na HAN ; Pei WANG ; Wei ZHANG ; Li-rong ZHANG
Chinese Journal of Applied Physiology 2015;31(2):143-147
OBJECTIVETo investigate the effect of midazolam on human ether-a-go-go (hERG) K+ channels exogenously expressed in human embryonic kidney cells (HEK-293) and the underlying molecular mechanisms.
METHODSWhole-cell patch clamp technique was used to record WT, Y652A and F656C hERG K+ current expressed in HEK-293 cells.
RESULTSMidazolam inhibited hERG K+ current in a concentration-dependent manner, the half-maximum block concentrations (IC50) values were (1.31 ± 0.32) µmol/L. The half-activation voltage (V1/2) were (2.32 ± 0.38) mV for the control and (-1.96 ± 0.83) mV for 1.0 µmol/L midazolam. The half-inactivation voltage (V1/2) was slightly shifted towards negative voltages from (-49.25 ± 0.69) mV in control to (-57.53 ± 0.53) mV after 1.0 µmol/L midazolam (P < 0.05). Mutations in drug-binding sites (Y652A or F656C) of the hERG channel significantly attenuated the hERG current blockade by midazolam.
CONCLUSIONMidazolam can block hERG K+ channel and cause the speed of inactivation faster. Mutations in the drug-binding sites (Y652 or F656) of the hERG channel were found to attenuate hERG current blockage by midazolam.
Dose-Response Relationship, Drug ; Ether-A-Go-Go Potassium Channels ; drug effects ; HEK293 Cells ; Humans ; Midazolam ; pharmacology ; Mutation ; Patch-Clamp Techniques ; Potassium Channel Blockers ; pharmacology
9.Potassium ion channels and prostatic diseases.
Qing-Kui GUO ; Chao-Zhao LIANG
National Journal of Andrology 2005;11(6):458-461
Potassium ion channels are a complex of protein molded in the cell membrane lipids. Its expression is strong in normal prostatic epithelia and weak in different degrees in prostatic cancer epithelia, but not clearly known in chronic prostatitis epithelia. Drugs affecting potassium ion channels could provide a new direction and some new ideas for the treatment of prostatic diseases.
Animals
;
Humans
;
Male
;
Mice
;
Potassium Channel Blockers
;
pharmacology
;
therapeutic use
;
Potassium Channels
;
classification
;
drug effects
;
physiology
;
Prostatic Diseases
;
drug therapy
;
physiopathology
10.Inhibition of potassium currents in outer hair cells and Deiters' cells from guinea pig cochlea by linopirdine.
Shu-Sheng GONG ; Qing CHANG ; Juan DING
Acta Physiologica Sinica 2004;56(4):531-538
To study the functional expression of KCNQ gene in outer hair cells (OHCs) and Deiters' cells, the effects of linopirdine on the whole cell K(+) current were investigated by using the whole cell variant of patch clamp technique in the present study. The outward tetraethylammonium (TEA)-sensitive K(+) current and the inward K(+) current (I(Kn)) in OHCs were recorded and measured before and after the administration of linopirdine. Simultaneously, the whole cell currents in Deiters?cells were also observed in normal solution and in the presence of linopirdine. After the application of 100 micromol/L linopirdine to OHCs, the peak K(+) current was reversibly blocked and the late K(+) current was partly reduced. In addition, the decay time constant of the TEA-sensitive K(+) current was prolonged in the presence of 100 micromol/L linopirdine. The inward current in OHCs was totally inhibited after the superfusion of 100 mmol/L and 200 micromol/L linopirdine respectively. The outward rectifier K(+) current (Ik) was the dominant K(+) current in the whole cell currents in Deiters' cells. In the presence of 200 micromol/L linopirdine, the I(K) current was not significantly affected. Our findings demonstrate that the KCNQ heteromeric or homomeric potassium channel is possibly the molecular basis for the peak outward K(+) current and that the inward I(Kn) current is mediated by KCNQ potassium channel. KCNQ potassium channel in OHCs can not only permit the K(+) efflux but also limit the depolarization. In the present study, no expression of KCNQ potassium channel is found in Deiters' cells.
Animals
;
Cochlea
;
cytology
;
Electrophysiology
;
Guinea Pigs
;
Hair Cells, Auditory, Outer
;
cytology
;
metabolism
;
Indoles
;
pharmacology
;
KCNQ Potassium Channels
;
Patch-Clamp Techniques
;
Potassium Channel Blockers
;
pharmacology
;
Potassium Channels
;
physiology
;
Potassium Channels, Voltage-Gated
;
genetics
;
Pyridines
;
pharmacology
;
Vestibular Nucleus, Lateral
;
cytology