1.Advances in metabolic engineering of macrolide antibiotics.
Chinese Journal of Biotechnology 2021;37(5):1737-1747
14- to 16-membered macrolide antibiotics (MA) are clinically important anti-infective drugs. With the rapid emergence of bacterial resistance, there is an urgent need to develop novel MA to counter drug-resistant bacteria. The targeted optimization of MA can be guided by analyzing the interaction between the MA and its ribosomal targets, and the desired MA derivatives can be obtained efficiently when combining with the rapidly developed metabolic engineering approaches. In the past 30 years, metabolic engineering approaches have shown great advantages in engineering the biosynthesis of MA to create new derivatives and to improve their production. These metabolic engineering approaches include modification of the structural domains of the polyketide synthase (PKS) and post-PKS modification enzymes as well as combinatorial biosynthesis. In addition, the R&D (including the evaluation of its antimicrobial activities and the optimization through metabolic engineering) of carrimycin, a new 16-membered macrolide drug, are described in details in this review.
Anti-Bacterial Agents
;
Bacteria/genetics*
;
Macrolides
;
Metabolic Engineering
;
Polyketide Synthases
2.Overexpression of a fusion protein of 4-coumaroyl-CoA ligase and polyketide synthase for raspberry ketone production in Chlamydomonas reinhardtii.
Wenqing NIU ; Hangtao WEI ; Feiyan XUE ; Mingfeng YANG
Chinese Journal of Biotechnology 2021;37(7):2495-2502
Raspberry ketones have important therapeutic properties such as anti-influenza and prevention of diabetes. In order to obtain raspberry ketone from Chlamydomonas reinhardtii, two enzymes catalyzing the last two steps of raspberry ketone synthesis, i.e. 4-coumaryl-CoA ligase (4CL) and polyketide synthase (PKS1), were fused using a glycine-serine-glycine (GSG) tripeptide linker to construct an expression vector pChla-4CL-PKS1. The fusion gene 4CL-PKS1 driven by a PSAD promoter was transformed into a wild-type (CC125) and a cell wall-deficient C. reinhardtii (CC425) by electroporation. The results showed the recombinant C. reinhardtii strain CC125 and CC425 with 4CL-PKS1 produced raspberry ketone at a level of 6.7 μg/g (fresh weight) and 5.9 μg/g (fresh weight), respectively, both were higher than that of the native raspberry ketone producing plants (2-4 μg/g).
Acyl Coenzyme A
;
Butanones
;
Chlamydomonas reinhardtii/genetics*
;
Ligases
;
Polyketide Synthases
3.Preparation and crystallization of Polygonum cuspidatum benzalacetone synthase.
Wenrui MA ; Chunmei LIU ; Mingfeng YANG ; Feiyan XUE ; Qing CHEN ; Lanqing MA ; Heshu LÜ
Chinese Journal of Biotechnology 2016;32(2):250-258
The chalcone synthase (CHS) superfamily of the type III polyketide synthases (PKSs) generates backbones of a variety of plant secondary metabolites. Benzalacetone synthase (BAS) catalyzes a condensation reaction of decarboxylation between the substrates of 4-coumaric coenzyme A and malonyl coenzyme A to generate benzylidene acetone, whose derivatives are series of compounds with various biological activities. A BAS gene Pcpks2 and a bifunctional CHS/BAS PcPKSI were isolated from medicinal plant P. cuspidatum. Crystallographic and structure-based mutagenesis studies indicate that the functional diversity of the CHS-superfamily enzymes is principally derived from small modifications of the active site architecture. In order to obtain an understanding of the biosynthesis of polyketides in P. cuspidatum, which has been poorly described, as well as of its activation mechanism, PcPKS2 was overexpressed in Escherichia coli as a C-terminally poly-His-tagged fusion protein, purified to homogeneity and crystallized, which is helpful for the clarification of the catalytic mechanism of the enzyme and lays the foundation for its genetic engineering manipulation.
Butanones
;
Catalytic Domain
;
Crystallization
;
Fallopia japonica
;
enzymology
;
Polyketide Synthases
;
genetics
;
metabolism
4.Lysohexaenetides A and B, linear lipopeptides from Lysobacter sp. DSM 3655 identified by heterologous expression in Streptomyces.
Qiushuang XU ; Haochen ZOU ; Chen PAN ; Haoxin WANG ; Yuemao SHEN ; Yaoyao LI
Chinese Journal of Natural Medicines (English Ed.) 2023;21(6):454-458
Lysobacter harbors a plethora of cryptic biosynthetic gene clusters (BGCs), albeit only a limited number have been analyzed to date. In this study, we described the activation of a cryptic polyketide synthase (PKS)/nonribosomal peptide synthetase (NRPS) gene cluster (lsh) in Lysobacter sp. DSM 3655 through promoter engineering and heterologous expression in Streptomyces sp. S001. As a result of this methodology, we were able to isolate two novel linear lipopeptides, lysohexaenetides A (1) and B (2), from the recombinant strain S001-lsh. Furthermore, we proposed the biosynthetic pathway for lysohexaenetides and identified LshA as another example of entirely iterative bacterial PKSs. This study highlights the potential of heterologous expression systems in uncovering cryptic biosynthetic pathways in Lysobacter genomes, particularly in the absence of genetic manipulation tools.
Lysobacter/metabolism*
;
Streptomyces/metabolism*
;
Lipopeptides/metabolism*
;
Polyketide Synthases/genetics*
;
Multigene Family
5.Engineering the precursor supply pathway in Streptomyces gilvosporeus for overproduction of natamycin.
Dezhen KONG ; Hao LI ; Xiaojie LI ; Zhoujie XIE ; Hao LIU
Chinese Journal of Biotechnology 2022;38(12):4630-4643
Natamycin is a safe and efficient antimycotics which is widely used in food and medicine industry. The polyene macrolide compound, produced by several bacterial species of the genus Streptomyces, is synthesized by type Ⅰ polyketide synthases using acetyl-CoA, malonyl-CoA, and methylmalonyl-CoA as substrates. In this study, four pathways potentially responsible for the supply of the three precursors were evaluated to identify the effective precursor supply pathway which can support the overproduction of natamycin in Streptomyces gilvosporeus, a natamycin-producing wild-type strain. The results showed that over-expressing acetyl-CoA synthetase and methylmalonyl-CoA mutase increased the yield of natamycin by 44.19% and 20.51%, respectively, compared with the wild type strain under shake flask fermentation. Moreover, the yield of natamycin was increased by 66.29% compared with the wild-type strain by co-overexpression of acetyl-CoA synthetase and methylmalonyl-CoA mutase. The above findings will facilitate natamycin strain improvement as well as development of strains for producing other polyketide compounds.
Natamycin/metabolism*
;
Methylmalonyl-CoA Mutase/metabolism*
;
Acetyl Coenzyme A/metabolism*
;
Streptomyces/genetics*
;
Polyketide Synthases/metabolism*
6.Roles of geldanamycin biosynthetic genes in Streptomyces hygroscopicus 17997.
Weiqing HE ; Yuying LIU ; Guizhi SUN ; Yiguang WANG
Chinese Journal of Biotechnology 2008;24(7):1133-1139
Geldanamycin (Gdm), an inhibitor of heat shock protein 90 (Hsp90), shows antitumor and antivirus bioactivity. Most Geldanamycin biosynthetic genes have been cloned from the genome library of Streptomyces hygroscopicus 17997. In this report, polyketide synthase (pks) gene, mono-oxygenase (gdmM) gene and carbamoyltransferase gene (gdmN) were subjected to inactivation. Three gene disrupted mutants (deltapks, deltagdmM and deltagdmN) were obtained by double crossover. No Geldanamycin production was detected in three mutant strains cultured in fermentation broth. Gene complementation experiments excluded the possible polar effect of gene disruption on other genes. These results confirmed that pks, gdmM and gdmN genes were essential for Geldanamycin biosynthesis.
Benzoquinones
;
metabolism
;
Carboxyl and Carbamoyl Transferases
;
genetics
;
Lactams, Macrocyclic
;
metabolism
;
Mixed Function Oxygenases
;
genetics
;
Polyketide Synthases
;
genetics
;
Streptomyces
;
genetics
;
metabolism
7.The PKS/NRPS hetero-gene cluster of epothilones.
Zhi-Feng LI ; Etienne NGUIMBI ; Yue-Zhong LI ; Wei-Feng LIU
Chinese Journal of Biotechnology 2003;19(5):511-515
Novel macrolides epothilones, produced by cellulolytic myxobacterium Sorangium cellulosum, have the activity to promote microtubule assembly, and are considered to be a potential successor to the famous antitumor drug taxol. The biosynthetic genes leading to the epothilones are clustered into a large operon. The multi-enzyme complex is a hetero-gene cluster of polyketide synthase (PKS) and non-ribosomal peptide synthetases (NRPS) and contains several functional modules, i.e. a loading module, one NRPS module, eight PKS modules, and a P450 epoxidase. The former ten modules biosynthesize desoxyepothilone (epothilones C and D), which is then epoxidized at C12 and C13 and converted into epothilones (epothilones A and B) by the P450 epoxidase. The NRPS module is responsible for the formation of the thiazole side chain from cysteine. The biosynthesis procedure of epothilones can be divided into 5 stages, i.e. formation of holo-ACP/PCP, chain initiation and thiazole ring formation, chain elongation, termination and epoxidation, and post-modification. The analysis of the gene cluster and the biosynthetic pathway reveals that novel epothilone analogs could not only be produced by chemical synthesis/modification, tranditional microbial technologies, but also can be genetically manipulated through combinatiorial biosynthesis approaches.
Bacterial Proteins
;
genetics
;
metabolism
;
Epothilones
;
chemistry
;
metabolism
;
Molecular Structure
;
Multigene Family
;
genetics
;
physiology
;
Myxococcales
;
enzymology
;
genetics
;
metabolism
;
Peptide Synthases
;
genetics
;
metabolism
;
Polyketide Synthases
;
genetics
;
metabolism
8.Heterologous expression and substrate specificity of ketoreductase domain in bacillaene polyketide synthase.
Xiaohui SUN ; Chengchuan CHE ; Junjie JI ; Jianting ZHENG ; Ge YANG
Chinese Journal of Biotechnology 2015;31(9):1355-1362
The ketoreductase (KR) domain in the first extending module of the polyketide synthase (PKS) catalyzes the reductions of both an α-keto group and a β-keto group in the biosynthesis of bacillaene, suggesting the intrinsic substrate promiscuity. In order to further investigate the substrate specificity, the KR domain (BacKR1) was heterologously overexpressed in Escherichia coli. In vitro enzymatic analysis showed that only one of the four diastereomers was formed in the reduction of the racemic (±)-2-methyl-3-oxopentanoyl-N-acetylcysteamine thioester catalyzed by BacKR1. In addition, BacKR1 was revealed to catalyze the reductions of cyclohexanone and p-chloroacetophenone, indicating the potential of KR domians of PKSs as biocatalysts.
Bacterial Proteins
;
genetics
;
metabolism
;
Catalysis
;
Cyclohexanones
;
metabolism
;
Escherichia coli
;
enzymology
;
Polyketide Synthases
;
genetics
;
metabolism
;
Protein Structure, Tertiary
;
Substrate Specificity
;
omega-Chloroacetophenone
;
metabolism
9.Construction of a mutant of Actinoplanes sp. N902-109 that produces a new rapamycin analog.
He HUANG ; Ping GAO ; Qi ZHAO ; Hai-Feng HU
Chinese Journal of Natural Medicines (English Ed.) 2018;16(3):210-218
In the present study, we introduced point mutations into Ac_rapA which encodes a polyketide synthase responsible for rapamycin biosynthesis in Actinoplanes sp. N902-109, in order to construct a mutant with an inactivated enoylreductase (ER) domain, which was able to synthesize a new rapamycin analog. Based on the homologous recombination induced by double-strand breaks in chromosome mediated by endonuclease I-SceI, the site-directed mutation in the first ER domain of Ac_rapA was introduced using non-replicating plasmid pLYERIA combined with an I-SceI expression plasmid. Three amino acid residues of the active center, Ala-Gly-Gly, were converted to Ala-Ser-Pro. The broth of the mutant strain SIPI-027 was analyzed by HPLC and a new peak with the similar UV spectrum to that of rapamycin was found. The sample of the new peak was prepared by solvent extraction, column chromatography, and crystallization methods. The structure of new compound, named as SIPI-rapxin, was elucidated by determining and analyzing its MS and NMR spectra and its biological activity was assessed using mixed lymphocyte reaction (MLR). An ER domain-deficient mutant of Actinoplanes sp. N902-109, named as SIPI-027, was constructed, which produced a novel rapamycin analog SIPI-rapxin and its structure was elucidated to be 35, 36-didehydro-27-O-demethylrapamycin. The biological activity of SIPI-rapxin was better than that of rapamycin. In conclusion, inactivation of the first ER domain of rapA, one of the modular polyketide synthase responsible for macro-lactone synthesis of rapamycin, gave rise to a mutant capable of producing a novel rapamycin analog, 35, 36-didehydro-27-O-demethylrapamycin, demonstrating that the enoylreductase domain was responsible for the reduction of the double bond between C-35 and C-36 during rapamycin synthesis.
Anti-Bacterial Agents
;
chemistry
;
metabolism
;
Bacterial Proteins
;
chemistry
;
genetics
;
metabolism
;
Genetic Engineering
;
Micromonosporaceae
;
chemistry
;
enzymology
;
genetics
;
metabolism
;
Mutation
;
Polyketide Synthases
;
chemistry
;
genetics
;
metabolism
;
Protein Domains
;
Sirolimus
;
analogs & derivatives
;
metabolism