1.A comprehensive overview of type III polyketide synthases from plants: molecular mechanism and application perspective--a review.
Chinese Journal of Biotechnology 2009;25(11):1601-1607
Type III polyketide synthases (PKSs) from plants produce a variety of plant secondary metabolites with notable structural diversity and biological activity. These metabolites not only afford plants the ability to defend against pathogen attack and other external stresses, but also exhibit a wide range of biological effects on human health. Several plant PKSs have been identified and studied in recent years. This paper summarized what was known about plant PKSs and some of their aspects such as molecular structure, reaction mechanisms, gene expression and regulation, and transgenic engineering. The review provides information for manipulating polyketide formation and further increasing the scope of polyketide biosynthetic diversity, as well as new avenues for developing transgenic engineering of type III PKSs.
Catalysis
;
Plants
;
enzymology
;
Polyketide Synthases
;
chemistry
;
classification
;
metabolism
;
Protein Engineering
2.Biosynthesis-based production improvement and structure modification of erythromycin A.
Dandan CHEN ; Jiequn WU ; Wen LIU
Chinese Journal of Biotechnology 2015;31(6):939-954
Erythromycin A is a clinically important macrolide antibiotic with broad-spectrum activity. Its biosynthesis involves the formation of the 14-membered skeleton catalyzed by polyketide synthases, and the modification steps such as hydroxylation, glycosylation and methylation. Based on the understanding of the biosynthetic mechanism, it is reliable to genetically manipulate the erythromycin A-producing strain for production improvement and structure modification. In this paper, we reviewed the progress regarding erythromycin A in high-producing strain construction and chemical structure derivation, to provide insights for further development.
Anti-Bacterial Agents
;
biosynthesis
;
chemistry
;
Erythromycin
;
biosynthesis
;
chemistry
;
Glycosylation
;
Hydroxylation
;
Methylation
;
Multigene Family
;
Polyketide Synthases
;
metabolism
3.Site-directed mutagenesis enhances the activity of benzylidene acetone synthase of polyketide synthase from Polygonum cuspidatum.
Zhimin HE ; Wenrui MA ; Liping YU ; Heshu LÜ ; Mingfeng YANG
Chinese Journal of Biotechnology 2023;39(7):2806-2817
Polygonum cuspidatum polyketide synthase 1 (PcPKS1) has the catalytic activity of chalcone synthase (CHS) and benzylidene acetone synthase (BAS), which can catalyze the production of polyketides naringenin chalcone and benzylidene acetone, and then catalyze the synthesis of flavonoids or benzylidene acetone. In this study, three amino acid sites (Thr133, Ser134, Ser33) that may affect the function of PcPKS1 were identified by analyzing the sequences of PcPKS1, the BAS from Rheum palmatum and the CHS from Arabidopsis thaliana, as well as the conformation of the catalytic site of the enzyme. Molecular modification of PcPKS1 was carried out by site-directed mutagenesis, and two mutants were successfully obtained. The in vitro enzymatic reactions were carried out, and the differences in activity were detected by high performance liquid chromatography (HPLC). Finally, mutants T133LS134A and S339V with bifunctional activity were obtained. In addition to bifunctional activities of BAS and CHS, the modified PcPKS1 had much higher BAS activity than that of the wild type PcPKS1 under the conditions of pH 7.0 and pH 9.0, respectively. It provides a theoretical basis for future use of PcPKS1 in genetic engineering to regulate the biosynthesis of flavonoids and raspberry ketones.
Amino Acid Sequence
;
Fallopia japonica/metabolism*
;
Polyketide Synthases/chemistry*
;
Acetone
;
Mutagenesis, Site-Directed
;
Flavonoids/metabolism*
;
Acyltransferases/metabolism*
4.The PKS/NRPS hetero-gene cluster of epothilones.
Zhi-Feng LI ; Etienne NGUIMBI ; Yue-Zhong LI ; Wei-Feng LIU
Chinese Journal of Biotechnology 2003;19(5):511-515
Novel macrolides epothilones, produced by cellulolytic myxobacterium Sorangium cellulosum, have the activity to promote microtubule assembly, and are considered to be a potential successor to the famous antitumor drug taxol. The biosynthetic genes leading to the epothilones are clustered into a large operon. The multi-enzyme complex is a hetero-gene cluster of polyketide synthase (PKS) and non-ribosomal peptide synthetases (NRPS) and contains several functional modules, i.e. a loading module, one NRPS module, eight PKS modules, and a P450 epoxidase. The former ten modules biosynthesize desoxyepothilone (epothilones C and D), which is then epoxidized at C12 and C13 and converted into epothilones (epothilones A and B) by the P450 epoxidase. The NRPS module is responsible for the formation of the thiazole side chain from cysteine. The biosynthesis procedure of epothilones can be divided into 5 stages, i.e. formation of holo-ACP/PCP, chain initiation and thiazole ring formation, chain elongation, termination and epoxidation, and post-modification. The analysis of the gene cluster and the biosynthetic pathway reveals that novel epothilone analogs could not only be produced by chemical synthesis/modification, tranditional microbial technologies, but also can be genetically manipulated through combinatiorial biosynthesis approaches.
Bacterial Proteins
;
genetics
;
metabolism
;
Epothilones
;
chemistry
;
metabolism
;
Molecular Structure
;
Multigene Family
;
genetics
;
physiology
;
Myxococcales
;
enzymology
;
genetics
;
metabolism
;
Peptide Synthases
;
genetics
;
metabolism
;
Polyketide Synthases
;
genetics
;
metabolism
5.Construction of a mutant of Actinoplanes sp. N902-109 that produces a new rapamycin analog.
He HUANG ; Ping GAO ; Qi ZHAO ; Hai-Feng HU
Chinese Journal of Natural Medicines (English Ed.) 2018;16(3):210-218
In the present study, we introduced point mutations into Ac_rapA which encodes a polyketide synthase responsible for rapamycin biosynthesis in Actinoplanes sp. N902-109, in order to construct a mutant with an inactivated enoylreductase (ER) domain, which was able to synthesize a new rapamycin analog. Based on the homologous recombination induced by double-strand breaks in chromosome mediated by endonuclease I-SceI, the site-directed mutation in the first ER domain of Ac_rapA was introduced using non-replicating plasmid pLYERIA combined with an I-SceI expression plasmid. Three amino acid residues of the active center, Ala-Gly-Gly, were converted to Ala-Ser-Pro. The broth of the mutant strain SIPI-027 was analyzed by HPLC and a new peak with the similar UV spectrum to that of rapamycin was found. The sample of the new peak was prepared by solvent extraction, column chromatography, and crystallization methods. The structure of new compound, named as SIPI-rapxin, was elucidated by determining and analyzing its MS and NMR spectra and its biological activity was assessed using mixed lymphocyte reaction (MLR). An ER domain-deficient mutant of Actinoplanes sp. N902-109, named as SIPI-027, was constructed, which produced a novel rapamycin analog SIPI-rapxin and its structure was elucidated to be 35, 36-didehydro-27-O-demethylrapamycin. The biological activity of SIPI-rapxin was better than that of rapamycin. In conclusion, inactivation of the first ER domain of rapA, one of the modular polyketide synthase responsible for macro-lactone synthesis of rapamycin, gave rise to a mutant capable of producing a novel rapamycin analog, 35, 36-didehydro-27-O-demethylrapamycin, demonstrating that the enoylreductase domain was responsible for the reduction of the double bond between C-35 and C-36 during rapamycin synthesis.
Anti-Bacterial Agents
;
chemistry
;
metabolism
;
Bacterial Proteins
;
chemistry
;
genetics
;
metabolism
;
Genetic Engineering
;
Micromonosporaceae
;
chemistry
;
enzymology
;
genetics
;
metabolism
;
Mutation
;
Polyketide Synthases
;
chemistry
;
genetics
;
metabolism
;
Protein Domains
;
Sirolimus
;
analogs & derivatives
;
metabolism