1.Derivation of Ecological Protective Concentration using the Probabilistic Ecological Risk Assessment applicable for Korean Water Environment: (I) Cadmium.
Sun Hwa NAM ; Woo Mi LEE ; Youn Joo AN
Toxicological Research 2012;28(2):129-137
Probabilistic ecological risk assessment (PERA) for deriving ecological protective concentration (EPC) was previously suggested in USA, Australia, New Zealand, Canada, and Netherland. This study suggested the EPC of cadmium (Cd) based on the PERA to be suitable to Korean aquatic ecosystem. First, we collected reliable ecotoxicity data from reliable data without restriction and reliable data with restrictions. Next, we sorted the ecotoxicity data based on the site-specific locations, exposure duration, and water hardness. To correct toxicity by the water hardness, EU's hardness corrected algorithm was used with slope factor 0.89 and a benchmark of water hardness 100. EPC was calculated according to statistical extrapolation method (SEM), statistical extrapolation methodAcute to chronic ratio (SEMACR), and assessment factor method (AFM). As a result, aquatic toxicity data of Cd were collected from 43 acute toxicity data (4 Actinopterygill, 29 Branchiopoda, 1 Polychaeta, 2 Bryozoa, 6 Chlorophyceae, 1 Chanophyceae) and 40 chronic toxicity data (2 Actinopterygill, 23 Branchiopoda, 9 Chlorophyceae, 6 Macrophytes). Because toxicity data of Cd belongs to 4 classes in taxonomical classification, acute and chronic EPC (11.07 microg/l and 0.034 microg/l, respectively) was calculated according to SEM technique. These values were included in the range of international EPCs. This study would be useful to establish the ecological standard for the protection of aquatic ecosystem in Korea.
Australia
;
Bryozoa
;
Cadmium
;
Canada
;
Ecosystem
;
Hardness
;
Korea
;
New Zealand
;
Phosphorylcholine
;
Polychaeta
;
Risk Assessment
;
Water
2.The expression of phenylalanine hydroxylase in the brain of ragworm Neanthes japonica (Polychaeta, Annelida).
Guimin REN ; Zhe DONG ; Chao LIU ; Yimeng LIU ; Zhidong LUAN ; Qi LIU ; Xuexiang BAO ; Shun WANG
Chinese Journal of Biotechnology 2016;32(4):518-526
Phenylalanine hydroxylase (PAH) is a member of aromatic amino acid hydroxylase (AAAHs) family, and catalyze phenylalanine (Phe) into tyrosine (Tyr). Using immunological and RT-PCR methods to prove the existence of phenylalanine hydroxylase (PAH) gene in the brain of Neanthes japonica in protein and nucleic acid level. Using Western blotting to detect the pah immunogenicity of Neanthes japonica. Making paraffin sections and using immunohistochemical technique to identify the presence and distribution of the phenylalanine hydroxylase gene in the brain of Neanthes japonica. Clone pah gene from the brain of Neanthes japonica by RT-PCR, constructing plasmid and transferring into E. coli to amplification, picking a single homogeneous colony, double digesting then making sequence and comparing homology. Western blotting results showed that the expression of the protein is present in Neanthes japonica brain, immunohistochemistry technique results showed that phenylalanine hydroxylase mainly expressed in abdominal of forebrain, dorsal and sides of midbrain. RT-PCR technique results showed that the phenylalanine hydroxylase exist in the brain of Neanthes japonica and has a high homology with others animals. PAH is present in the lower organisms Neanthes japonica, in protein and nucleic acid level. Which provide the foundation for further study the evolution of aromatic amino acid hydroxylase genes in invertebrate.
Animals
;
Blotting, Western
;
Brain
;
enzymology
;
Escherichia coli
;
metabolism
;
Phenylalanine Hydroxylase
;
genetics
;
metabolism
;
Polychaeta
;
enzymology
;
genetics