1.Nerve growth factor upregulates sirtuin 1 expression in cholestasis: a potential therapeutic target
Ming Shian TSAI ; Po Huang LEE ; Cheuk Kwan SUN ; Ting Chia CHIU ; Yu Chun LIN ; I Wei CHANG ; Po Han CHEN ; Ying Hsien KAO
Experimental & Molecular Medicine 2018;50(1):e426-
This study investigated the regulatory role of nerve growth factor (NGF) in sirtuin 1 (SIRT1) expression in cholestatic livers. We evaluated the expression of NGF and its cognate receptors in human livers with hepatolithiasis and the effects of NGF therapy on liver injury and hepatic SIRT1 expression in a bile duct ligation (BDL) mouse model. Histopathological and molecular analyses showed that the hepatocytes of human diseased livers expressed NGF, proNGF (a precursor of NGF), TrkA and p75NTR, whereas only p75NTR was upregulated in hepatolithiasis, compared with non-hepatolithiasis livers. In the BDL model without NGF therapy, p75NTR, but not TrkA antagonism, significantly deteriorated BDL-induced liver injury. By contrast, the hepatoprotective effect of NGF was abrogated only by TrkA and not by p75NTR antagonism in animals receiving NGF therapy. Intriguingly, a positive correlation between hepatic SIRT1 and NGF expression was found in human livers. In vitro studies demonstrated that NGF upregulated SIRT1 expression in mouse livers and human Huh-7 and rodent hepatocytes. Both NGF and proNGF induced protective effects against hydrogen peroxide-induced cytotoxicity in Huh-7 cells, whereas inhibition of TrkA and p75NTR activity prevented oxidative cell death. Mechanistically, NGF, but not proNGF, upregulated SIRT1 expression in human Huh-7 and rodent hepatocytes via nuclear factor (NF)-κB activity, whereas NGF-induced phosphoinositide-3 kinase/Akt, extracellular signal–regulated kinase and NF-κB signaling and SIRT1 activity were involved in its hepatoprotective effects against oxidative injury. These findings suggest that pharmacological manipulation of the NGF/SIRT1 axis might serve as a novel approach for the treatment of cholestatic disease.
Animals
;
Bile Ducts
;
Cell Death
;
Cholestasis
;
Hepatocytes
;
Humans
;
Hydrogen
;
In Vitro Techniques
;
Ligation
;
Liver
;
Mice
;
Nerve Growth Factor
;
Phosphotransferases
;
Rodentia
;
Sirtuin 1
2.Infusion of Human Mesenchymal Stem Cells Improves Regenerative Niche in Thioacetamide-Injured Mouse Liver
Ying-Hsien KAO ; Yu-Chun LIN ; Po-Huang LEE ; Chia-Wei LIN ; Po-Han CHEN ; Tzong-Shyuan TAI ; Yo-Chen CHANG ; Ming-Huei CHOU ; Chih-Yang CHANG ; Cheuk-Kwan SUN
Tissue Engineering and Regenerative Medicine 2020;17(5):671-682
BACKGROUND:
This study investigated whether xenotransplantation of human Wharton’s jelly-derived mesenchymal stem cells (WJ-MSCs) reduces thioacetamide (TAA)-induced mouse liver fibrosis and the underlying molecular mechanism.
METHODS:
Recipient NOD/SCID mice were injected intraperitoneally with TAA twice weekly for 6 weeks before initial administration of WJ-MSCs. Expression of regenerative and pro-fibrogenic markers in mouse fibrotic livers were monitored post cytotherapy. A hepatic stallate cell line HSC-T6 and isolated WJ-MSCs were used for in vitro adhesion, migration and mechanistic studies.
RESULTS:
WJ-MSCs were isolated from human umbilical cords by an explant method and characterized by flow cytometry. A single infusion of WJ-MSCs to TAA-treated mice significantly reduced collagen deposition and ameliorated liver fibrosis after 2-week therapy. In addition to enhanced expression of hepatic regenerative factor, hepatocyte growth factor, and PCNA proliferative marker, WJ-MSC therapy significantly blunted pro-fibrogenic signals, including Smad2, RhoA, ERK. Intriguingly, reduction of plasma fibronectin (pFN) in fibrotic livers was noted in MSC-treated mice. In vitro studies further demonstrated that suspending MSCs triggered pFN degradation, soluble pFN conversely retarded adhesion of suspending MSCs onto type I collagen-coated surface, whereas pFN coating enhanced WJ-MSC migration across mimicked wound bed. Moreover, pretreatment with soluble pFN and conditioned medium from MSCs with pFN strikingly attenuated the response of HSC-T6 cells to TGF-b1-stimulation in Smad2 phosphorylation and RhoA upregulation.
CONCLUSION
These findings suggest that cytotherapy using WJ-MSCs may modulate hepatic pFN deposition for a better regenerative niche in the fibrotic livers and may constitute a useful anti-fibrogenic intervention in chronic liver diseases.
3.Infusion of Human Mesenchymal Stem Cells Improves Regenerative Niche in Thioacetamide-Injured Mouse Liver
Ying-Hsien KAO ; Yu-Chun LIN ; Po-Huang LEE ; Chia-Wei LIN ; Po-Han CHEN ; Tzong-Shyuan TAI ; Yo-Chen CHANG ; Ming-Huei CHOU ; Chih-Yang CHANG ; Cheuk-Kwan SUN
Tissue Engineering and Regenerative Medicine 2020;17(5):671-682
BACKGROUND:
This study investigated whether xenotransplantation of human Wharton’s jelly-derived mesenchymal stem cells (WJ-MSCs) reduces thioacetamide (TAA)-induced mouse liver fibrosis and the underlying molecular mechanism.
METHODS:
Recipient NOD/SCID mice were injected intraperitoneally with TAA twice weekly for 6 weeks before initial administration of WJ-MSCs. Expression of regenerative and pro-fibrogenic markers in mouse fibrotic livers were monitored post cytotherapy. A hepatic stallate cell line HSC-T6 and isolated WJ-MSCs were used for in vitro adhesion, migration and mechanistic studies.
RESULTS:
WJ-MSCs were isolated from human umbilical cords by an explant method and characterized by flow cytometry. A single infusion of WJ-MSCs to TAA-treated mice significantly reduced collagen deposition and ameliorated liver fibrosis after 2-week therapy. In addition to enhanced expression of hepatic regenerative factor, hepatocyte growth factor, and PCNA proliferative marker, WJ-MSC therapy significantly blunted pro-fibrogenic signals, including Smad2, RhoA, ERK. Intriguingly, reduction of plasma fibronectin (pFN) in fibrotic livers was noted in MSC-treated mice. In vitro studies further demonstrated that suspending MSCs triggered pFN degradation, soluble pFN conversely retarded adhesion of suspending MSCs onto type I collagen-coated surface, whereas pFN coating enhanced WJ-MSC migration across mimicked wound bed. Moreover, pretreatment with soluble pFN and conditioned medium from MSCs with pFN strikingly attenuated the response of HSC-T6 cells to TGF-b1-stimulation in Smad2 phosphorylation and RhoA upregulation.
CONCLUSION
These findings suggest that cytotherapy using WJ-MSCs may modulate hepatic pFN deposition for a better regenerative niche in the fibrotic livers and may constitute a useful anti-fibrogenic intervention in chronic liver diseases.
4.Danshensu Interventions Mediate Rapid Antidepressant Effects by Activating the Mammalian Target of Rapamycin Signaling and Brain-Derived Neurotrophic Factor Release
Han-Wen CHUANG ; Chih-Chia HUANG ; Kuang-Ti CHEN ; Yen-Yu KUO ; Jou-Hua REN ; Tse-Yen WANG ; Mang-Hung TSAI ; Po-Ting CHEN ; I-Hua WEI
Psychiatry Investigation 2024;21(11):1286-1298
Objective:
Danshensu, a phenylpropanoid compound, is derived from the dry root and rhizome of Danshen (Salvia miltiorrhiza), a traditional Chinese medicinal herb. Evidence suggests that danshensu protects isolated rat hearts against ischemia/reperfusion injury by activating the protein kinase B (Akt)/extracellular signal-regulated kinase (ERK) pathway or by inhibiting autophagy and apoptosis through the activation of mammalian target of rapamycin (mTOR) signaling. Furthermore, danshensu promotes the postischemic regeneration of brain cells by upregulating the expression of brain-derived neurotrophic factor (BDNF) in the peri-infarct region. However, basic and clinical studies are needed to investigate the antidepressant effects danshensu and determine whether brain mTOR signaling and BDNF activation mediate these effects. The aforementioned need prompted us to conduct the present study.
Methods:
Using a C57BL/6 mouse model, we investigated the antidepressant-like effects of danshensu and the mechanisms that mediate these effects. To elucidate the mechanisms, we analyzed the roles of Akt/ERK–mTOR signaling and BDNF activation in mediating the antidepressant-like effects of danshensu.
Results:
Danshensu exerted its antidepressant-like effects by activating the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) of Akt/ERK–mTOR signaling and promoting BDNF release. Treatment with danshensu increased the level of glutamate receptor 1 phosphorylation at the protein kinase A site.
Conclusion
Our study may be the first to demonstrate that the antidepressant effects of danshensu are dependent on the activation of the AMPAR–mTOR signaling pathway, are correlated with the elevation of BDNF level, and facilitate the insertion of AMPAR into the postsynaptic membrane. This study also pioneers in unveiling the potential of danshensu against depressive disorders.
5.Danshensu Interventions Mediate Rapid Antidepressant Effects by Activating the Mammalian Target of Rapamycin Signaling and Brain-Derived Neurotrophic Factor Release
Han-Wen CHUANG ; Chih-Chia HUANG ; Kuang-Ti CHEN ; Yen-Yu KUO ; Jou-Hua REN ; Tse-Yen WANG ; Mang-Hung TSAI ; Po-Ting CHEN ; I-Hua WEI
Psychiatry Investigation 2024;21(11):1286-1298
Objective:
Danshensu, a phenylpropanoid compound, is derived from the dry root and rhizome of Danshen (Salvia miltiorrhiza), a traditional Chinese medicinal herb. Evidence suggests that danshensu protects isolated rat hearts against ischemia/reperfusion injury by activating the protein kinase B (Akt)/extracellular signal-regulated kinase (ERK) pathway or by inhibiting autophagy and apoptosis through the activation of mammalian target of rapamycin (mTOR) signaling. Furthermore, danshensu promotes the postischemic regeneration of brain cells by upregulating the expression of brain-derived neurotrophic factor (BDNF) in the peri-infarct region. However, basic and clinical studies are needed to investigate the antidepressant effects danshensu and determine whether brain mTOR signaling and BDNF activation mediate these effects. The aforementioned need prompted us to conduct the present study.
Methods:
Using a C57BL/6 mouse model, we investigated the antidepressant-like effects of danshensu and the mechanisms that mediate these effects. To elucidate the mechanisms, we analyzed the roles of Akt/ERK–mTOR signaling and BDNF activation in mediating the antidepressant-like effects of danshensu.
Results:
Danshensu exerted its antidepressant-like effects by activating the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) of Akt/ERK–mTOR signaling and promoting BDNF release. Treatment with danshensu increased the level of glutamate receptor 1 phosphorylation at the protein kinase A site.
Conclusion
Our study may be the first to demonstrate that the antidepressant effects of danshensu are dependent on the activation of the AMPAR–mTOR signaling pathway, are correlated with the elevation of BDNF level, and facilitate the insertion of AMPAR into the postsynaptic membrane. This study also pioneers in unveiling the potential of danshensu against depressive disorders.
6.Danshensu Interventions Mediate Rapid Antidepressant Effects by Activating the Mammalian Target of Rapamycin Signaling and Brain-Derived Neurotrophic Factor Release
Han-Wen CHUANG ; Chih-Chia HUANG ; Kuang-Ti CHEN ; Yen-Yu KUO ; Jou-Hua REN ; Tse-Yen WANG ; Mang-Hung TSAI ; Po-Ting CHEN ; I-Hua WEI
Psychiatry Investigation 2024;21(11):1286-1298
Objective:
Danshensu, a phenylpropanoid compound, is derived from the dry root and rhizome of Danshen (Salvia miltiorrhiza), a traditional Chinese medicinal herb. Evidence suggests that danshensu protects isolated rat hearts against ischemia/reperfusion injury by activating the protein kinase B (Akt)/extracellular signal-regulated kinase (ERK) pathway or by inhibiting autophagy and apoptosis through the activation of mammalian target of rapamycin (mTOR) signaling. Furthermore, danshensu promotes the postischemic regeneration of brain cells by upregulating the expression of brain-derived neurotrophic factor (BDNF) in the peri-infarct region. However, basic and clinical studies are needed to investigate the antidepressant effects danshensu and determine whether brain mTOR signaling and BDNF activation mediate these effects. The aforementioned need prompted us to conduct the present study.
Methods:
Using a C57BL/6 mouse model, we investigated the antidepressant-like effects of danshensu and the mechanisms that mediate these effects. To elucidate the mechanisms, we analyzed the roles of Akt/ERK–mTOR signaling and BDNF activation in mediating the antidepressant-like effects of danshensu.
Results:
Danshensu exerted its antidepressant-like effects by activating the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) of Akt/ERK–mTOR signaling and promoting BDNF release. Treatment with danshensu increased the level of glutamate receptor 1 phosphorylation at the protein kinase A site.
Conclusion
Our study may be the first to demonstrate that the antidepressant effects of danshensu are dependent on the activation of the AMPAR–mTOR signaling pathway, are correlated with the elevation of BDNF level, and facilitate the insertion of AMPAR into the postsynaptic membrane. This study also pioneers in unveiling the potential of danshensu against depressive disorders.
7.Danshensu Interventions Mediate Rapid Antidepressant Effects by Activating the Mammalian Target of Rapamycin Signaling and Brain-Derived Neurotrophic Factor Release
Han-Wen CHUANG ; Chih-Chia HUANG ; Kuang-Ti CHEN ; Yen-Yu KUO ; Jou-Hua REN ; Tse-Yen WANG ; Mang-Hung TSAI ; Po-Ting CHEN ; I-Hua WEI
Psychiatry Investigation 2024;21(11):1286-1298
Objective:
Danshensu, a phenylpropanoid compound, is derived from the dry root and rhizome of Danshen (Salvia miltiorrhiza), a traditional Chinese medicinal herb. Evidence suggests that danshensu protects isolated rat hearts against ischemia/reperfusion injury by activating the protein kinase B (Akt)/extracellular signal-regulated kinase (ERK) pathway or by inhibiting autophagy and apoptosis through the activation of mammalian target of rapamycin (mTOR) signaling. Furthermore, danshensu promotes the postischemic regeneration of brain cells by upregulating the expression of brain-derived neurotrophic factor (BDNF) in the peri-infarct region. However, basic and clinical studies are needed to investigate the antidepressant effects danshensu and determine whether brain mTOR signaling and BDNF activation mediate these effects. The aforementioned need prompted us to conduct the present study.
Methods:
Using a C57BL/6 mouse model, we investigated the antidepressant-like effects of danshensu and the mechanisms that mediate these effects. To elucidate the mechanisms, we analyzed the roles of Akt/ERK–mTOR signaling and BDNF activation in mediating the antidepressant-like effects of danshensu.
Results:
Danshensu exerted its antidepressant-like effects by activating the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) of Akt/ERK–mTOR signaling and promoting BDNF release. Treatment with danshensu increased the level of glutamate receptor 1 phosphorylation at the protein kinase A site.
Conclusion
Our study may be the first to demonstrate that the antidepressant effects of danshensu are dependent on the activation of the AMPAR–mTOR signaling pathway, are correlated with the elevation of BDNF level, and facilitate the insertion of AMPAR into the postsynaptic membrane. This study also pioneers in unveiling the potential of danshensu against depressive disorders.
8.Danshensu Interventions Mediate Rapid Antidepressant Effects by Activating the Mammalian Target of Rapamycin Signaling and Brain-Derived Neurotrophic Factor Release
Han-Wen CHUANG ; Chih-Chia HUANG ; Kuang-Ti CHEN ; Yen-Yu KUO ; Jou-Hua REN ; Tse-Yen WANG ; Mang-Hung TSAI ; Po-Ting CHEN ; I-Hua WEI
Psychiatry Investigation 2024;21(11):1286-1298
Objective:
Danshensu, a phenylpropanoid compound, is derived from the dry root and rhizome of Danshen (Salvia miltiorrhiza), a traditional Chinese medicinal herb. Evidence suggests that danshensu protects isolated rat hearts against ischemia/reperfusion injury by activating the protein kinase B (Akt)/extracellular signal-regulated kinase (ERK) pathway or by inhibiting autophagy and apoptosis through the activation of mammalian target of rapamycin (mTOR) signaling. Furthermore, danshensu promotes the postischemic regeneration of brain cells by upregulating the expression of brain-derived neurotrophic factor (BDNF) in the peri-infarct region. However, basic and clinical studies are needed to investigate the antidepressant effects danshensu and determine whether brain mTOR signaling and BDNF activation mediate these effects. The aforementioned need prompted us to conduct the present study.
Methods:
Using a C57BL/6 mouse model, we investigated the antidepressant-like effects of danshensu and the mechanisms that mediate these effects. To elucidate the mechanisms, we analyzed the roles of Akt/ERK–mTOR signaling and BDNF activation in mediating the antidepressant-like effects of danshensu.
Results:
Danshensu exerted its antidepressant-like effects by activating the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) of Akt/ERK–mTOR signaling and promoting BDNF release. Treatment with danshensu increased the level of glutamate receptor 1 phosphorylation at the protein kinase A site.
Conclusion
Our study may be the first to demonstrate that the antidepressant effects of danshensu are dependent on the activation of the AMPAR–mTOR signaling pathway, are correlated with the elevation of BDNF level, and facilitate the insertion of AMPAR into the postsynaptic membrane. This study also pioneers in unveiling the potential of danshensu against depressive disorders.
9.Effects of transcatheter closure of patent ductus arteriosus in 139 adult patients
Xian-Yang ZHU ; Huo-Yuan CHEN ; Duan-Zhen ZHANG ; Xiu-Min HAN ; Xiao-Tang SHENG ; Chun-Sheng CUI ; Po ZHANG ; Qi-Guang WANG
Chinese Journal of Cardiology 2009;37(11):998-1001
Objective To analyze the clinical feature and the effects of transcatheter closure of adult patients with patent ductus arteriosus (PDA). Methods Between January 2000 and April 2009, 139 patients [22 male, aged from 40 to 74:(49.8±6.8) years] with PDA were hospitalized in our hospital. Clinical data and effects of transcatheter closure of PDA were analyzed. Results There were 64 patients with NYHA class Ⅰ, 53 with class Ⅱ, 16 with class Ⅲ and 6 with class Ⅳ before procedure. In 139 patients, pulmonary arterial hypertension (PAH) was found in 107 out of 139 patients (77.0%). Transcatheter PDA closure was not performed in 3 patients due to severe PAH and successfully performed in the remaining 136 patients (97.8%) without major complications. Post procedure aortic angiography evidenced minor residual shunt in 14 cases, small residual shunt in 2 cases and moderate shunt in 1 case. The NYHA class was significantly improved and the PAH significantly reduced [sPAP: (47.3±23.9)mm Hg(1 mmHg=0.133 kPa) vs. (28.1±12.3) mm Hg,P<0.01] post procedure. Conclusion PAH and heart failure were commonly associated with PDA in adult patients. Transcatheter PDA closure is safe and effective in these patients except those with severe PAH.
10.In-room cytologic evaluation by trained endosonographer for determination of procedure end in endoscopic ultrasound-guided fine needle biopsy of solid pancreatic lesions: a prospective study in Taiwan
Weng-Fai WONG ; Yu-Ting KUO ; Wern-Cherng CHENG ; Chia-Tung SHUN ; Ming-Lun HAN ; Chieh-Chang CHEN ; Hsiu-Po WANG
Clinical Endoscopy 2025;58(3):465-473
Background/Aims:
Endoscopic ultrasound-guided fine needle biopsy (EUS-FNB) is an essential tool for tissue acquisition in solid pancreatic tumors. Rapid on-site evaluation (ROSE) by cytologists ensures diagnostic accuracy. However, the universal application of the ROSE is limited by its availability. Therefore, we aimed to investigate the feasibility of determining the end of the procedure based on the results of in-room cytological evaluation by trained endosonographers (IRCETE).
Methods:
A training course focusing on the cytological interpretation of common pancreatic tumors was provided to the three endosonographers. After training, the decision to terminate EUS-FNB was made based on IRCETE results. The diagnostic accuracy, concordance rate of diagnostic categories, and sample adequacy were compared with those determined by board-certified cytologists and macroscopic on-site evaluation (MOSE).
Results:
We enrolled 65 patients with solid pancreatic tumors, most of whom were malignant (86.2%). The diagnostic accuracy was 90.8% when the end of the procedure was determined based on IRCETE, compared to 87.7% and 98.5% when determined by MOSE and cytologists, respectively (p=0.060). Based on the cytologists’ results, the accuracy of IRCETE in diagnostic category interpretation was 97.3%.
Conclusions
In the absence of ROSE, IRCETE can serve as a supplementary alternative to MOSE in determining the end of tissue sampling with a high accuracy rate.