1.High-dose estrogen impairs demethylation of H3K27me3 by decreasing Kdm6b expression during ovarian hyperstimulation in mice.
Quanmin KANG ; Fang LE ; Xiayuan XU ; Lifang CHEN ; Shi ZHENG ; Lijun LOU ; Nan JIANG ; Ruimin ZHAO ; Yuanyuan ZHOU ; Juan SHEN ; Minhao HU ; Ning WANG ; Qiongxiao HUANG ; Fan JIN
Journal of Zhejiang University. Science. B 2025;26(3):269-285
Given that ovarian stimulation is vital for assisted reproductive technology (ART) and results in elevated serum estrogen levels, exploring the impact of elevated estrogen exposure on oocytes and embryos is necessary. We investigated the effects of various ovarian stimulation treatments on oocyte and embryo morphology and gene expression using a mouse model and estrogen-treated mouse embryonic stem cells (mESCs). Female C57BL/6J mice were subjected to two types of conventional ovarian stimulation and ovarian hyperstimulation; mice treated with only normal saline served as controls. Hyperstimulation resulted in high serum estrogen levels, enlarged ovaries, an increased number of aberrant oocytes, and decreased embryo formation. The messenger RNA (mRNA)-sequencing of oocytes revealed the dysregulated expression of lysine-specific demethylase 6b (Kdm6b), which may be a key factor indicating hyperstimulation-induced aberrant oocytes and embryos. In vitro, Kdm6b expression was downregulated in mESCs treated with high-dose estrogen; treatment with an estrogen receptor antagonist could reverse this downregulated expression level. Furthermore, treatment with high-dose estrogen resulted in the upregulated expression of histone H3 lysine 27 trimethylation (H3K27me3) and phosphorylated H2A histone family member X (γ-H2AX). Notably, knockdown of Kdm6b and high estrogen levels hindered the formation of embryoid bodies, with a concomitant increase in the expression of H3K27me3 and γ-H2AX. Collectively, our findings revealed that hyperstimulation-induced high-dose estrogen could impair the demethylation of H3K27me3 by reducing Kdm6b expression. Accordingly, Kdm6b could be a promising marker for clinically predicting ART outcomes in patients with ovarian hyperstimulation syndrome.
Female
;
Mice
;
Demethylation/drug effects*
;
Embryonic Stem Cells
;
Estrogens/administration & dosage*
;
Gene Expression/drug effects*
;
Histones/metabolism*
;
Jumonji Domain-Containing Histone Demethylases/metabolism*
;
Mice, Inbred C57BL
;
Oocytes
;
Ovary/drug effects*
;
Reproductive Techniques, Assisted
;
Animals
2.Mitochondria derived from human embryonic stem cell-derived mesenchymal stem cells alleviate the inflammatory response in human gingival fibroblasts.
Bicong GAO ; Chenlu SHEN ; Kejia LV ; Xuehui LI ; Yongting ZHANG ; Fan SHI ; Hongyan DIAO ; Hua YAO
Journal of Zhejiang University. Science. B 2025;26(8):778-788
Periodontitis is a common oral disease caused by bacteria coupled with an excessive host immune response. Stem cell therapy can be a promising treatment strategy for periodontitis, but the relevant mechanism is complicated. This study aimed to explore the therapeutic potential of mitochondria from human embryonic stem cell-derived mesenchymal stem cells (hESC-MSCs) for the treatment of periodontitis. The gingival tissues of periodontitis patients are characterized by abnormal mitochondrial structure. Human gingival fibroblasts (HGFs) were exposed to 5 μg/mL lipopolysaccharide (LPS) for 24 h to establish a cell injury model. When treated with hESC-MSCs or mitochondria derived from hESC-MSCs, HGFs showed reduced expression of inflammatory genes, increased adenosine triphosphate (ATP) level, decreased reactive oxygen species (ROS) production, and enhanced mitochondrial function compared to the control. The average efficiency of isolated mitochondrial transfer by hESC-MSCs was determined to be 8.93%. Besides, a therapy of local mitochondrial injection in mice with LPS-induced periodontitis showed a reduction in inflammatory gene expression, as well as an increase in both the mitochondrial number and the aspect ratio in gingival tissues. In conclusion, our results indicate that mitochondria derived from hESC-MSCs can reduce the inflammatory response and improve mitochondrial function in HGFs, suggesting that the transfer of mitochondria between hESC-MSCs and HGFs serves as a potential mechanism underlying the therapeutic effect of stem cells.
Humans
;
Gingiva/cytology*
;
Fibroblasts/metabolism*
;
Mitochondria/physiology*
;
Mesenchymal Stem Cells/cytology*
;
Animals
;
Periodontitis/therapy*
;
Mice
;
Reactive Oxygen Species/metabolism*
;
Inflammation
;
Lipopolysaccharides
;
Human Embryonic Stem Cells/cytology*
;
Cells, Cultured
;
Adenosine Triphosphate/metabolism*
;
Male
3.Construction of cardiac organoids derived from human induced pluripotent stem cells for cardiac disease modeling and drug evaluation.
Xue GONG ; Yongyang FAN ; Kaiyuan LUO ; Yi YAN ; Zhonghao LI
Journal of Southern Medical University 2025;45(11):2444-2455
METHODS:
Cardiac organoids derived from the self-assembled human induced pluripotent stem cells were constructed by regulating the Wnt signaling pathway. Flow cytometry was used to detect the proportion of cardiomyocytes in the cardiac organoids, and RT-qPCR was employed to detect the mRNA expressions. Immunofluorescence staining was used to detect the protein expressions of TNNT2, CD31, and vimentin. The beating amplitude of the cardiac organoids was determined with calcium transient. In vitro myocardial injury models and ischemia-reperfusion models were established, and the cell injuries were examined using Masson staining. TUNEL staining and calcium transient detection were used to evaluate the adverse effects of doxorubicin and trastuzumab in the cardiac organoids.
RESULTS:
The cardiac organoids began to beat on the 8th day of culture and consisted of 32.4% cardiomyocytes with high expressions of the myocardial markers TNNT2, NKX2.5, RYR2 and KCNJ2. No significant differences in morphological size, beating frequency, proportion of cardiomyocytes, or myocardial contractility were observed in the cardiac organoids differentiated from different batches. These cardiac organoids could be maintained in in vitro culture conditions for at least 50 days. Captopril treatment could obviously alleviate liquid nitrogen-induced myocardial injury in the cardiac organoids. Hypoxia/reoxygenation induced ischemia-reperfusion injury and promoted myocardial fibrosis and apoptosis in the cardiac organoids. Treatment with doxorubicin for 24 h resulted in significantly increased cell death and reduced beating frequency and cell viability in the cardiac organoids in a dose-dependent manner. Trastuzumab significantly impaired the contractile and calcium handling abilities of the cardiac organoids.
CONCLUSIONS
Cardiac organoids derived from human induced pluripotent stem cells have been successfully constructed and can be used for cardiac disease modeling and drug evaluation.
Humans
;
Induced Pluripotent Stem Cells/cytology*
;
Organoids/cytology*
;
Myocytes, Cardiac/cytology*
;
Cell Differentiation
;
Heart Diseases
4.SMAD2/3-SMYD2 and developmental transcription factors cooperate with cell-cycle inhibitors to guide tissue formation.
Stefania MILITI ; Reshma NIBHANI ; Martin POOK ; Siim PAUKLIN
Protein & Cell 2025;16(4):260-285
Tissue formation and organ homeostasis are achieved by precise coordination of proliferation and differentiation of stem cells and progenitors. While deregulation of these processes can result in degenerative disease or cancer, their molecular interplays remain unclear. Here we show that the switch of human pluripotent stem cell (hPSC) self-renewal to differentiation is associated with the induction of distinct cyclin-dependent kinase inhibitors (CDKIs). In hPSCs, Activin/Nodal/TGFβ signaling maintains CDKIs in a poised state via SMAD2/3-NANOG-OCT4-EZH2-SNON transcriptional complex. Upon gradual differentiation, CDKIs are induced by successive transcriptional complexes between SMAD2/3-SMYD2 and developmental regulators such as EOMES, thereby lengthening the G1 phase. This, in turn, induces SMAD2/3 transcriptional activity by blocking its linker phosphorylation. Such SMAD2/3-CDKI positive feedback loops drive the exit from pluripotency and stepwise cell-fate specification that could be harnessed for producing cells for therapeutic applications. Our study uncovers fundamental mechanisms of how cell-fate specification is interconnected to cell-cycle dynamics and provides insight into autonomous circuitries governing tissue self-formation.
Humans
;
Smad2 Protein/genetics*
;
Smad3 Protein/genetics*
;
Cell Differentiation
;
Pluripotent Stem Cells/metabolism*
;
Signal Transduction
;
Octamer Transcription Factor-3/genetics*
;
Enhancer of Zeste Homolog 2 Protein/genetics*
;
Nanog Homeobox Protein/genetics*
;
Phosphorylation
5.Skin organoid transplantation promotes tissue repair with scarless in frostbite.
Wenwen WANG ; Pu LIU ; Wendi ZHU ; Tianwei LI ; Ying WANG ; Yujie WANG ; Jun LI ; Jie MA ; Ling LENG
Protein & Cell 2025;16(4):240-259
Frostbite is the most common cold injury and is caused by both immediate cold-induced cell death and the gradual development of localized inflammation and tissue ischemia. Delayed healing of frostbite often leads to scar formation, which not only causes psychological distress but also tends to result in the development of secondary malignant tumors. Therefore, a rapid healing method for frostbite wounds is urgently needed. Herein, we used a mouse skin model of frostbite injury to evaluate the recovery process after frostbite. Moreover, single-cell transcriptomics was used to determine the patterns of changes in monocytes, macrophages, epidermal cells, and fibroblasts during frostbite. Most importantly, human-induced pluripotent stem cell (hiPSC)-derived skin organoids combined with gelatin-hydrogel were constructed for the treatment of frostbite. The results showed that skin organoid treatment significantly accelerated wound healing by reducing early inflammation after frostbite and increasing the proportions of epidermal stem cells. Moreover, in the later stage of wound healing, skin organoids reduced the overall proportions of fibroblasts, significantly reduced fibroblast-to-myofibroblast transition by regulating the integrin α5β1-FAK pathway, and remodeled the extracellular matrix (ECM) through degradation and reassembly mechanisms, facilitating the restoration of physiological ECM and reducing the abundance of ECM associated with abnormal scar formation. These results highlight the potential application of organoids for promoting the reversal of frostbite-related injury and the recovery of skin functions. This study provides a new therapeutic alternative for patients suffering from disfigurement and skin dysfunction caused by frostbite.
Animals
;
Organoids/metabolism*
;
Mice
;
Humans
;
Wound Healing
;
Frostbite/metabolism*
;
Skin/pathology*
;
Induced Pluripotent Stem Cells/cytology*
;
Cicatrix/pathology*
;
Fibroblasts/metabolism*
;
Disease Models, Animal
;
Mice, Inbred C57BL
;
Extracellular Matrix/metabolism*
;
Male
6.Optimized derivation and culture system of human naïve pluripotent stem cells with enhanced DNA methylation status and genomic stability.
Yan BI ; Jindian HU ; Tao WU ; Zhaohui OUYANG ; Tan LIN ; Jiaxing SUN ; Xinbao ZHANG ; Xiaoyu XU ; Hong WANG ; Ke WEI ; Shaorong GAO ; Yixuan WANG
Protein & Cell 2025;16(10):858-872
Human naïve pluripotent stem cells (PSCs) hold great promise for embryonic development studies. Existing induction and culture strategies for these cells, heavily dependent on MEK inhibitors, lead to widespread DNA hypomethylation, aberrant imprinting loss, and genomic instability during extended culture. Here, employing high-content analysis alongside a bifluorescence reporter system indicative of human naïve pluripotency, we screened over 1,600 chemicals and identified seven promising candidates. From these, we developed four optimized media-LAY, LADY, LUDY, and LKPY-that effectively induce and sustain PSCs in the naïve state. Notably, cells reset or cultured in these media, especially in the LAY system, demonstrate improved genome-wide DNA methylation status closely resembling that of pre-implantation counterparts, with partially restored imprinting and significantly enhanced genomic stability. Overall, our study contributes advancements to naïve pluripotency induction and long-term maintenance, providing insights for further applications of naïve PSCs.
Humans
;
DNA Methylation/drug effects*
;
Genomic Instability
;
Pluripotent Stem Cells/metabolism*
;
Cell Culture Techniques/methods*
;
Cells, Cultured
7.Mechanism of human embryonic stem cell-derived mesenchymal stem cells on alleviating brain injury after cardiopulmonary resuscitation in swine with cardiac arrest.
Feng GE ; Jiefeng XU ; Jinjiang ZHU ; Guangli CAO ; Xuguang WANG ; Meiya ZHOU ; Tiejiang CHEN ; Mao ZHANG
Chinese Critical Care Medicine 2025;37(2):133-139
OBJECTIVE:
To investigate the mechanism of human embryonic stem cell-derived mesenchymal stem cells (hESC-MSC) in alleviating brain injury after resuscitation in swine with cardiac arrest (CA).
METHODS:
Twenty-nine healthy male large white swine were randomly divided into Sham group (n = 9), cardiopulmonary resuscitation (CPR) group (n = 10) and hESC-MSC group (n = 10). The Sham group only completed animal preparation. In CPR group and hESC-MSC group, the swine model of CA-CPR was established by inducing ventricular fibrillation for 10 minutes with electrical stimulation and CPR for 6 minutes. At 5 minutes after successful resuscitation, hESC-MSC 2.5×106/kg was injected via intravenous micropump within 1 hour in hESC-MSC group. Venous blood samples were collected before resuscitation and at 4, 8, 24, 48 and 72 hours of resuscitation. The levels of neuron specific enolase (NSE) and S100B protein (S100B) were detected by enzyme linked immunosorbent assay (ELISA). At 24, 48 and 72 hours of resuscitation, neurological deficit score (NDS) and cerebral performance category (CPC) were used to evaluate the neurological function of the animals. Three animals from each group were randomly selected and euthanized at 24, 48, and 72 hours of resuscitation, and the hippocampus tissues were quickly obtained. Immunofluorescence staining was used to detect the distribution of hESC-MSC in hippocampus. Immunohistochemical staining was used to detect the activation of astrocytes and microglia and the survival of neurons in the hippocampus. The degree of apoptosis was detected by TdT-mediated dUTP nick end labeling (TUNEL).
RESULTS:
The serum NSE and S100B levels of brain injury markers in CPR group and hESC-MSC group were significantly higher than those in Sham group at 24 hours of resuscitation, and then gradually increased. The levels of NSE and S100B in serum at each time of resuscitation in hESC-MSC group were significantly lower than those in CPR group [NSE (μg/L): 20.69±3.62 vs. 28.95±3.48 at 4 hours, 27.04±5.56 vs. 48.59±9.22 at 72 hours; S100B (μg/L): 2.29±0.39 vs. 3.60±0.73 at 4 hours, 2.38±0.15 vs. 3.92±0.50 at 72 hours, all P < 0.05]. In terms of neurological function, compared with the Sham group, the NDS score and CPC score in the CPR group and hESC-MSC group increased significantly at 24 hours of resuscitation, and then gradually decreased. The NDS and CPC scores of hESC-MSC group were significantly lower than those of CPR group at 24 hours of resuscitation (NDS: 111.67±20.21 vs. 170.00±21.79, CPC: 2.33±0.29 vs. 3.00±0.00, both P < 0.05). The expression of hESC-MSC positive markers CD73, CD90 and CD105 in the hippocampus of hESC-MSC group at 24, 48 and 72 hours of resuscitation was observed under fluorescence microscope, indicating that hESC-MSC could homing to the damaged hippocampus. In addition, compared with Sham group, the proportion of astrocytes, microglia and apoptotic index in hippocampus of CPR group were significantly increased, and the proportion of neurons was significantly decreased at 24, 48 and 72 hours of resuscitation. Compared with CPR group, the proportion of astrocytes, microglia and apoptotic index in hippocampus of hESC-MSC group decreased and the proportion of neurons increased significantly at 24 hours of resuscitation [proportion of astrocytes: (14.33±1.00)% vs. (30.78±2.69)%, proportion of microglia: (12.00±0.88)% vs. (27.89±5.68)%, apoptotic index: (12.89±3.86)% vs. (52.33±7.77)%, proportion of neurons: (39.44±3.72)% vs. (28.33±1.53)%, all P < 0.05].
CONCLUSIONS
Application of hESC-MSC at the early stage of resuscitation can reduce the brain injury and neurological dysfunction after resuscitation in swine with CA. The mechanism may be related to the inhibition of immune cell activation, reduction of cell apoptosis and promotion of neuronal survival.
Animals
;
Heart Arrest/therapy*
;
Cardiopulmonary Resuscitation
;
Swine
;
Humans
;
Male
;
Human Embryonic Stem Cells/cytology*
;
Mesenchymal Stem Cell Transplantation
;
Mesenchymal Stem Cells/cytology*
;
Phosphopyruvate Hydratase/blood*
;
Brain Injuries/therapy*
;
S100 Calcium Binding Protein beta Subunit
;
Apoptosis
;
Disease Models, Animal
8.Research Advances in the Construction and Application of Intestinal Organoids.
Qing Xue MENG ; Hong Yang YI ; Peng WANG ; Shan LIU ; Wei Quan LIANG ; Cui Shan CHI ; Chen Yu MAO ; Wei Zheng LIANG ; Jun XUE ; Hong Zhou LU
Biomedical and Environmental Sciences 2025;38(2):230-247
The structure of intestinal tissue is complex. In vitro simulation of intestinal structure and function is important for studying intestinal development and diseases. Recently, organoids have been successfully constructed and they have come to play an important role in biomedical research. Organoids are miniaturized three-dimensional (3D) organs, derived from stem cells, which mimic the structure, cell types, and physiological functions of an organ, making them robust models for biomedical research. Intestinal organoids are 3D micro-organs derived from intestinal stem cells or pluripotent stem cells that can successfully simulate the complex structure and function of the intestine, thereby providing a valuable platform for intestinal development and disease research. In this article, we review the latest progress in the construction and application of intestinal organoids.
Organoids/cytology*
;
Intestines/physiology*
;
Humans
;
Animals
;
Pluripotent Stem Cells
9.Construction of a Sox17 activation vector based on the CRISPR/dCas9 system and its validation in sheep embryonic stem cells.
Wenli LÜ ; Hua YANG ; Hui XU ; Yanli ZHANG
Chinese Journal of Biotechnology 2025;41(7):2707-2718
The CRISPR/dCas9 system is a gene editing tool that has proven to be highly efficient and precise. By utilizing transcriptional activators, such as VP64, p65, and Rta, the system can effectively and stably activate target genes. Sox17, a transcription factor belonging to the SOX family, plays a crucial role in the differentiation of the germ layers and the determination of cell fates during the early stages of embryonic development. Sheep embryonic stem cells (sESCs) are characterized by their capacity for self-renewal and multidirectional differentiation, serving as a significant in vitro model for studying the mechanisms of cell differentiation during early embryonic development. However, the importing of exogenous genes into sESCs is challenging due to their unique growth characteristics. The objective of this study was to investigate the conditions necessary for successfully activating Sox17 in sESCs. To this end, we employed the CRISPR/dCas9 system along with liposome transfection, lentivirus invasion, and electroporation to activate Sox17 in sESCs. The expression of Sox17 was then determined by fluorescence quantitative PCR, on the basis of which the performance of different transfection methods was compared. The results indicated that the electroporation group had the best transfection effect and the highest Sox17 expression among the three transfection methods. The efficient and stable gene activation protocol will provide a reference for embryonic stem cell research in other species, especially livestock animals, and lay the foundation for the subsequent study of gene function and realization of precise cell fate regulation by regulating gene expression in sheep embryonic stem cells.
Animals
;
CRISPR-Cas Systems/genetics*
;
Sheep
;
SOXF Transcription Factors/genetics*
;
Embryonic Stem Cells/cytology*
;
Genetic Vectors/genetics*
;
Cell Differentiation/genetics*
;
Transfection
;
Gene Editing/methods*
10.Research progress in engineered hydrogels for organoids.
Ziran CHEN ; Rong HUANG ; Pengyu LI ; Yan LU ; Kai LI ; Wei SONG
Chinese Journal of Biotechnology 2025;41(8):3036-3048
Organoids are three-dimensional (3D) cellular structures formed through the differentiation and self-organization of pluripotent stem cells or tissue-derived cells, showing considerable potential in the research on disease mechanism, personalized medicine, and developmental biology. However, the development of organoids is limited by the complex composition, batch-to-batch variations, and immunogenicity of basement-membrane matrix in the current culture system, which hinders the clinical translation and in vivo applications of organoids. Hydrogels are highly hydrated 3D polymer network materials, with modifiable mechanical and biochemical properties by engineering, representing an ideal alternative to basement-membrane matrix. This article reviews the research progress in engineered hydrogels with defined composition currently used in organoid culture. We introduce the structural characteristics and engineering design considerations of hydrogels, emphasize the latest research progress and specific application cases, and discuss the future development of these engineered hydrogels, provide valuable insights for the further advancement and optimization of engineered hydrogels for organoid.
Hydrogels/chemistry*
;
Organoids/cytology*
;
Tissue Engineering/methods*
;
Humans
;
Animals
;
Pluripotent Stem Cells/cytology*
;
Cell Culture Techniques, Three Dimensional/methods*
;
Tissue Scaffolds

Result Analysis
Print
Save
E-mail