1.Mosquito Species Composition and Plasmodium vivax Infection Rates on Baengnyeong-do (Island), Republic of Korea.
Desmond H FOLEY ; Terry A KLEIN ; In Yong LEE ; Myung Soon KIM ; Richard C WILKERSON ; Genelle HARRISON ; Leopoldo M RUEDA ; Heung Chul KIM
The Korean Journal of Parasitology 2011;49(3):313-316
Vivax malaria is a significant military and civilian health threat in the north of the Republic of Korea (ROK). The island of Baengnyeong-do is the westernmost point of the ROK and is located close to the southwestern coast of the Democratic People's Republic of Korea (DPRK). Mosquitoes were collected using a black light trap on Baengnyeong-do, and Anopheles spp. were assayed by PCR, to identify the species, and screened for sporozoites of Plasmodium vivax. Of a subsample of 257 mosquitoes, Anopheles lesteri was the most frequently collected (49.8%), followed by Anopheles sinensis (22.6%), Anopheles pullus (18.7%), Anopheles kleini (7.8%), and Anopheles belenrae (1.2%). The overall sporozoite rate was 3.1%, with the highest rates observed in An. kleini (15.0%), An. sinensis (5.2%), and An. lesteri (1.6%). No sporozoite positive An. pullus or An. belenrae were observed. The results extend our knowledge of the distribution and potential role in malaria transmission of An. kleini, An. lesteri, and An. sinensis, for an area previously considered to be at a low risk for contracting vivax malaria.
Animals
;
Anopheles/*classification/genetics/*parasitology
;
Plasmodium vivax/genetics/*isolation & purification
;
Polymerase Chain Reaction
;
Prevalence
;
Republic of Korea
2.Plasmodium vivax dhfr Mutations among Isolates from Malarious Areas of Iran.
Jalal ZAMAN ; Abbas SHAHBAZI ; Mohammad ASGHARZADEH
The Korean Journal of Parasitology 2011;49(2):125-131
The use of sulfadoxine and pyrimethamine (SP) for treatment of vivax malaria is uncommon in most malarious areas, but Plasmodium vivax isolates are exposed to SP because of mixed infections with other Plasmodium species. As P. vivax is the most prevalent species of human malaria parasites in Iran, monitoring of resistance of the parasite against the drug is necessary. In the present study, 50 blood samples of symptomatic patients were collected from 4 separated geographical regions of south-east Iran. Point mutations at residues 57, 58, 61, and 117 were detected by the PCR-RFLP method. Polymorphism at positions 58R, 117N, and 117T of P. vivax dihydrofolate reductase (Pvdhfr) gene has been found in 12%, 34%, and 2% of isolates, respectively. Mutation at residues F57 and T61 was not detected. Five distinct haplotypes of the Pvdhfr gene were demonstrated. The 2 most prevalent haplotypes were F57S58T61S117 (62%) and F57S58T61N117 (24%). Haplotypes with 3 and 4 point mutations were not found. The present study suggested that P. vivax in Iran is under the pressure of SP and the sensitivity level of the parasite to SP is diminishing and this fact must be considered in development of malaria control programs.
Amino Acid Substitution/genetics
;
Antimalarials/*pharmacology
;
Drug Combinations
;
*Drug Resistance
;
Haplotypes
;
Humans
;
Iran
;
Malaria, Vivax/*parasitology
;
*Mutation, Missense
;
Plasmodium vivax/*enzymology/genetics/isolation & purification
;
Polymorphism, Genetic
;
Pyrimethamine/*pharmacology
;
Sulfadoxine/*pharmacology
;
Tetrahydrofolate Dehydrogenase/*genetics
3.Genetic Polymorphisms in Plasmodium vivax Dihydrofolate Reductase and Dihydropteroate Synthase in Isolates from the Philippines, Bangladesh, and Nepal.
Pimwan THONGDEE ; Jiraporn KUESAP ; Kanchana RUNGSIHIRUNRAT ; Shyam Prakash DUMRE ; Effie ESPINO ; Harald NOEDL ; Kesara NA-BANGCHANG
The Korean Journal of Parasitology 2015;53(2):227-232
Genetic polymorphisms of pvdhfr and pvdhps genes of Plasmodium vivax were investigated in 83 blood samples collected from patients in the Philippines, Bangladesh, and Nepal. The SNP-haplotypes of the pvdhfr gene at the amino acid positions 13, 33, 57, 58, 61, 117, and 173, and that of the pvdhps gene at the positions 383 and 553 were analyzed by nested PCR-RFLP. Results suggest diverse polymorphic patterns of pvdhfr alone as well as the combination patterns with pvdhps mutant alleles in P. vivax isolates collected from the 3 endemic countries in Asia. All samples carried mutant combination alleles of pvdhfr and pvdhps. The most prevalent combination alleles found in samples from the Philippines and Bangladesh were triple mutant pvdhfr combined with single mutant pvdhps allele and triple mutant pvdhfr combined with double wild-type pvdhps alleles, respectively. Those collected from Nepal were quadruple mutant pvdhfr combined with double wild-type pvdhps alleles. New alternative antifolate drugs which are effective against sulfadoxine-pyrimethamine (SP)-resistant P. vivax are required.
Amino Acid Sequence
;
Bangladesh
;
Base Sequence
;
Dihydropteroate Synthase/*genetics
;
Humans
;
Malaria, Vivax/*parasitology
;
Molecular Sequence Data
;
Nepal
;
Philippines
;
Plasmodium vivax/*enzymology/*genetics/isolation & purification
;
*Polymorphism, Genetic
;
Tetrahydrofolate Dehydrogenase/*genetics
4.Genetic Characteristics of Polymorphic Antigenic Markers among Korean Isolates of Plasmodium vivax.
Seung Young HWANG ; So Hee KIM ; Weon Gyu KHO
The Korean Journal of Parasitology 2009;47(Suppl):S51-S58
Plasmodium vivax, a protozoan malaria parasite of humans, represents a major public health concern in the Republic of Korea (= South Korea). However, little is known about the genetic properties and population structures of the P. vivax isolates circulating in South Korea. This article reviews known polymorphic genetic markers in South Korean isolates of P. vivax and briefly summarizes the current issues surrounding the gene and population structures of this parasite. The critical genetic characteristics of major antigens of the parasite, such as circumsporozoite protein (CSP), merozoite surface protein 1 (MSP-1) and MSP-3, Duffy binding protein (DBP), apical membrane antigen 1 (AMA-1), and GAM-1, are also discussed.
Amino Acid Sequence
;
Animals
;
Antigens, Protozoan/chemistry/*genetics
;
Base Sequence
;
Humans
;
Malaria, Vivax/*parasitology
;
Molecular Sequence Data
;
Plasmodium vivax/chemistry/*genetics/isolation & purification
;
*Polymorphism, Genetic
;
Protozoan Proteins/chemistry/*genetics
;
Republic of Korea
;
Sequence Alignment
5.Aspartic proteases of Plasmodium vivax are highly conserved in wild isolates.
Byoung Kuk NA ; Eung Goo LEE ; Hyeong Woo LEE ; Shin Hyeong CHO ; Young An BAE ; Yoon KONG ; Jong Koo LEE ; Tong Soo KIM
The Korean Journal of Parasitology 2004;42(2):61-66
The plasmepsins are the aspartic proteases of malaria parasites. Treatment of aspartic protease inhibitor inhibits hemoglobin hydrolysis and blocks the parasite development in vitro suggesting that these proteases might be exploited their potentials as antimalarial drug targets. In this study, we determined the genetic variations of the aspartic proteases of Plasmodium vivax (PvPMs) of wild isolates. Two plasmepsins (PvPM4 and PvPM5) were cloned and sequenced from 20 P. vivax Korean isolates and two imported isolates. The sequences of the enzymes were highly conserved except a small number of amino acid substitutions did not modify key residues for the function or the structure of the enzymes. The high sequence conservations between the plasmepsins from the isolates support the notion that the enzymes could be reliable targets for new antimalarial chemotherapeutics.
Amino Acid Sequence
;
Animals
;
Aspartic Endopeptidases/*genetics
;
Base Sequence
;
Cloning, Molecular
;
Conserved Sequence
;
DNA, Protozoan/chemistry/genetics
;
Human
;
Molecular Sequence Data
;
Plasmodium vivax/*enzymology/genetics/isolation & purification
;
Polymerase Chain Reaction
;
Sequence Alignment
;
Sequence Analysis, DNA
;
Support, Non-U.S. Gov't
6.Prevalence of Drug Resistance-Associated Gene Mutations in Plasmodium vivax in Central China.
Feng LU ; Bo WANG ; Jun CAO ; Jetsumon SATTABONGKOT ; Huayun ZHOU ; Guoding ZHU ; Kwonkee KIM ; Qi GAO ; Eun Taek HAN
The Korean Journal of Parasitology 2012;50(4):379-384
Resistance of Plasmodium spp. to anti-malarial drugs is the primary obstacle in the fight against malaria, and molecular markers for the drug resistance have been applied as an adjunct in the surveillance of the resistance. In this study, we investigated the prevalence of mutations in pvmdr1, pvcrt-o, pvdhfr, and pvdhps genes in temperate-zone P. vivax parasites from central China. A total of 26 isolates were selected, including 8 which were previously shown to have a lower susceptibility to chloroquine in vitro. For pvmdr1, pvcrt-o, and pvdhps genes, no resistance-conferring mutations were discovered. However, a highly prevalent (69.2%), single-point mutation (S117N) was found in pvdhfr gene. In addition, tandem repeat polymorphisms existed in pvdhfr and pvdhps genes, which warranted further studies in relation to the parasite resistance to antifolate drugs. The study further suggests that P. vivax populations in central China may still be relatively susceptible to chloroquine and sulfadoxine-pyrimethamine.
Antimalarials/*pharmacology
;
China
;
Chloroquine/pharmacology
;
DNA, Protozoan/chemistry/genetics
;
Drug Resistance/*genetics
;
Folic Acid Antagonists/pharmacology
;
Genotype
;
Humans
;
Malaria, Vivax/epidemiology/*parasitology
;
Plasmodium vivax/drug effects/*genetics/isolation & purification
;
Point Mutation
;
Polymorphism, Single Nucleotide/*genetics
;
Prevalence
;
Protozoan Proteins/genetics
;
Sequence Analysis, DNA
;
Tandem Repeat Sequences/*genetics
7.Analysis of polymorphic regions of Plasmodium vivax Duffy binding protein of Korean isolates.
Weon Gyu KHO ; Joon Yong CHUNG ; Eun Jeong SIM ; Dong Wook KIM ; Woo Chul CHUNG
The Korean Journal of Parasitology 2001;39(2):143-150
The present study was designed to investigate polymorphism in Duffy binding protein (DBP) gene of Plasmodium vivax isolates of Korea. Thirty samples were obtained from P. vivax patients in Yonchon-gun, Kyonggi-do in 1998. The PCR products of the samples were subjected to sequencing and hybridization analyses of the regions II and IV of P. vivax DBP gene. Two genotypes, SK-1 and SK-2, were identified on the basis of amino acid substitution and deletion. The genotype of 10 isolates was SK-1 and that of 20 isolates was SK-2. Most of the predicted amino acids in the region II of DBP gene were conserved between the Korean isolates and Belem strain except for 4-5 amino acid substitutions. In the region IV of DBP, a 6-bp insert that was shown in the Sal-1 allele type was found in SK-1, and a 27-bp insert that was shown in the Papua New Guinea allele type was found in SK-2. In conclusion, the present findings suggest that two genotypes of P. vivax coexist in the endemic area of Korea.
Amino Acid Sequence
;
Animals
;
*Antigens, Protozoan
;
Base Sequence
;
Carrier Proteins/*analysis/chemistry/*genetics
;
DNA, Protozoan/genetics
;
Genotype
;
Human
;
Korea
;
Malaria, Vivax/parasitology
;
Molecular Sequence Data
;
Plasmodium vivax/*genetics/isolation & purification
;
Polymerase Chain Reaction
;
*Polymorphism (Genetics)
;
*Protozoan Proteins
;
Receptors, Cell Surface/*analysis/chemistry/*genetics
;
Support, Non-U.S. Gov't
8.Evaluation of Rapid Diagnostics for Plasmodium falciparum and P. vivax in Mae Sot Malaria Endemic Area, Thailand.
Wanna CHAIJAROENKUL ; Thanee WONGCHAI ; Ronnatrai RUANGWEERAYUT ; Kesara NA-BANGCHANG
The Korean Journal of Parasitology 2011;49(1):33-38
Prompt and accurate diagnosis of malaria is the key to prevent disease morbidity and mortality. This study was carried out to evaluate diagnostic performance of 3 commercial rapid detection tests (RDTs), i.e., Malaria Antigen Pf/Pantrade mark, Malaria Ag-Pftrade mark, and Malaria Ag-Pvtrade mark tests, in comparison with the microscopic and PCR methods. A total of 460 blood samples microscopically positive for Plasmodium falciparum (211 samples), P. vivax (218), mixed with P. falciparum and P. vivax (30), or P. ovale (1), and 124 samples of healthy subjects or patients with other fever-related infections, were collected. The sensitivities of Malaria Ag-Pftrade mark and Malaria Antigen Pf/Pantrade mark compared with the microscopic method for P. falciparum or P. vivax detection were 97.6% and 99.0%, or 98.6% and 99.0%, respectively. The specificities of Malaria Ag-Pftrade mark, Malaria Ag-Pvtrade mark, and Malaria Antigen Pf/Pantrade mark were 93.3%, 98.8%, and 94.4%, respectively. The sensitivities of Malaria Ag-Pftrade mark, Malaria Antigen Pf/Pantrade mark, and microscopic method, when PCR was used as a reference method for P. falciparum or P. vivax detection were 91.8%, 100%, and 96.7%, or 91.9%, 92.6%, and 97.3%, respectively. The specificities of Malaria Ag-Pftrade mark, Malaria Ag-Pvtrade mark, Malaria Antigen Pf/Pantrade mark, and microscopic method were 66.2%, 92.7%, 73.9%, and 78.2%, respectively. Results indicated that the diagnostic performances of all the commercial RDTs are satisfactory for application to malaria diagnosis.
Antigens, Protozoan/blood
;
Cross-Sectional Studies
;
*Diagnostic Techniques and Procedures/instrumentation
;
Endemic Diseases/statistics & numerical data
;
Humans
;
Malaria/*diagnosis/epidemiology/parasitology
;
Malaria, Vivax
;
Plasmodium falciparum/genetics/immunology/*isolation & purification
;
Reagent Kits, Diagnostic
;
Thailand/epidemiology
9.Usefulness of the recombinant liver stage antigen-3 for an early serodiagnosis of Plasmodium falciparum infection.
Hyeong Woo LEE ; Sung Ung MOON ; Hye Sun RYU ; Yeon Joo KIM ; Shin Hyeong CHO ; Gyung Tae CHUNG ; Khin LIN ; Byoung Kuk NA ; Yoon KONG ; Kyung Suk CHUNG ; Tong Soo KIM
The Korean Journal of Parasitology 2006;44(1):49-54
In order to develop tools for an early serodiagnosis of Plasmodium falciparum infection, we evaluated the usefulness of P. falciparum liver stage antigen-3 (LSA-3) as a serodiagnostic antigen. A portion of LSA-3 gene was cloned, and its recombinant protein (rLSA-3) was expressed in Escherichia coli and purified by column chromatography. The purified rLSA-3 and 120 test blood/serum samples collected from inhabitants in malaria-endemic areas of Mandalay, Myanmar were used for this study. In microscopic examinations of blood samples, P. falciparum positive rate was 39.1% (47/120) in thin smear trials, and 33.3% (40/120) in thick smear trials. Although the positive rate associated with the rLSA-3 (30.8%) was lower than that of the blood stage antigens (70.8%), rLSA-3 based enzyme-linked immunosorbent assay could detect 12 seropositive cases (10.0%), in which blood stage antigens were not detected. These results indicate that the LSA-3 is a useful antigen for an early serodiagnosis of P. falciparum infection.
Recombinant Proteins/biosynthesis/genetics/*immunology
;
Plasmodium vivax/isolation & purification
;
Plasmodium falciparum/*immunology
;
Molecular Sequence Data
;
Malaria, Falciparum/blood/*diagnosis
;
Humans
;
Genes, Protozoan/genetics/immunology
;
Fluorescent Antibody Technique, Direct/methods
;
Escherichia coli/genetics
;
Enzyme-Linked Immunosorbent Assay/methods
;
Early Diagnosis
;
DNA, Protozoan/chemistry
;
DNA Primers/chemistry
;
Cloning, Molecular/methods
;
Base Sequence
;
Antigens, Protozoan/biosynthesis/chemistry/genetics/*immunology
;
Animals
;
Amino Acid Sequence
10.A Recombinant Plasmodium vivax Apical Membrane Antigen-1 to Detect Human Infection in Iran.
Afsaneh MOTEVALLI HAGHI ; Mohammad Reza KHORAMIZADE ; Mehdi NATEGHPOUR ; Mehdi MOHEBALI ; Gholam Hossein EDRISSIAN ; Mohammad Reza ESHRAGHIAN ; Zargham SEPEHRIZADEH
The Korean Journal of Parasitology 2012;50(1):15-21
In Iran, Plasmodium vivax is responsible for more than 80% of the infected cases of malaria per year. Control interventions for vivax malaria in humans rely mainly on developed diagnostic methods. Recombinant P. vivax apical membrane antigen-1 (rPvAMA-1) has been reported to achieve designing rapid, sensitive, and specific molecular diagnosis. This study aimed to perform isolation and expression of a rPvAMA-1, derived from Iranian patients residing in an endemic area. Then, the diagnostic efficiency of the characterized Iranian PvAMA-1 was assessed using an indirect ELISA method. For this purpose, a partial region of AMA-1 gene was amplified, cloned, and expressed in pET32a plasmid. The recombinant His-tagged protein was purified and used to coat the ELISA plate. Antibody detection was assessed by indirect ELISA using rPvAMA-1. The validity of the ELISA method for detection of anti-P. vivax antibodies in the field was compared to light microscopy on 84 confirmed P. vivax patients and compared to 84 non-P. vivax infected individuals. The ELISA cut-off value was calculated as the mean+2SD of OD values of the people living in malaria endemic areas from a south part of Iran. We found a cut-off point of OD=0.311 that showed the best correlation between the sera confirmed with P. vivax infection and healthy control sera. A sensitivity of 81.0% and specificity of 84.5% were found at this cut off titer. A good degree of statistical agreement was found between ELISA using rPvAMA-1 and light microscopy (0.827) by Kappa analysis.
Antibodies, Protozoan/blood/immunology
;
Antigens, Protozoan/*blood/genetics/immunology
;
Diagnostic Tests, Routine/*methods
;
Enzyme-Linked Immunosorbent Assay/*methods
;
Female
;
Humans
;
Iran
;
Malaria, Vivax/blood/*diagnosis/immunology/*parasitology
;
Male
;
Membrane Proteins/blood/genetics/immunology
;
Plasmodium vivax/isolation & purification/*physiology
;
Protozoan Proteins/blood/genetics/immunology
;
Sensitivity and Specificity