1.Allelic Diversity and Geographical Distribution of the Gene Encoding Plasmodium falciparum Merozoite Surface Protein-3 in Thailand.
Vorthon SAWASWONG ; Phumin SIMPALIPAN ; Napaporn SIRIPOON ; Pongchai HARNYUTTANAKORN ; Sittiporn PATTARADILOKRAT
The Korean Journal of Parasitology 2015;53(2):177-187
Merozoite surface proteins (MSPs) of malaria parasites play critical roles during the erythrocyte invasion and so are potential candidates for malaria vaccine development. However, because MSPs are often under strong immune selection, they can exhibit extensive genetic diversity. The gene encoding the merozoite surface protein-3 (MSP-3) of Plasmodium falciparum displays 2 allelic types, K1 and 3D7. In Thailand, the allelic frequency of the P. falciparum msp-3 gene was evaluated in a single P. falciparum population in Tak at the Thailand and Myanmar border. However, no study has yet looked at the extent of genetic diversity of the msp-3 gene in P. falciparum populations in other localities. Here, we genotyped the msp-3 alleles of 63 P. falciparum samples collected from 5 geographical populations along the borders of Thailand with 3 neighboring countries (Myanmar, Laos, and Cambodia). Our study indicated that the K1 and 3D7 alleles coexisted, but at different proportions in different Thai P. falciparum populations. K1 was more prevalent in populations at the Thailand-Myanmar and Thailand-Cambodia borders, whilst 3D7 was more prevalent at the Thailand-Laos border. Global analysis of the msp-3 allele frequencies revealed that proportions of K1 and 3D7 alleles of msp-3 also varied in different continents, suggesting the divergence of malaria parasite populations. In conclusion, the variation in the msp-3 allelic patterns of P. falciparum in Thailand provides fundamental knowledge for inferring the P. falciparum population structure and for the best design of msp-3 based malaria vaccines.
Antigens, Protozoan/*genetics
;
*Gene Frequency
;
*Genetic Variation
;
Genotype
;
Humans
;
Malaria, Falciparum/epidemiology/*parasitology
;
Plasmodium falciparum/classification/*genetics/isolation & purification
;
Polymorphism, Genetic
;
Protozoan Proteins/*genetics
;
Thailand/epidemiology
2.Whole Mitochondrial Genome Sequence of an Indian Plasmodium falciparum Field Isolate.
Suchi TYAGI ; Veena PANDE ; Aparup DAS
The Korean Journal of Parasitology 2014;52(1):99-103
Mitochondrial genome sequence of malaria parasites has served as a potential marker for inferring evolutionary history of the Plasmodium genus. In Plasmodium falciparum, the mitochondrial genome sequences from around the globe have provided important evolutionary understanding, but no Indian sequence has yet been utilized. We have sequenced the whole mitochondrial genome of a single P. falciparum field isolate from India using novel primers and compared with the 3D7 reference sequence and 1 previously reported Indian sequence. While the 2 Indian sequences were highly divergent from each other, the presently sequenced isolate was highly similar to the reference 3D7 strain.
DNA, Mitochondrial/*chemistry/*genetics
;
Genetic Variation
;
*Genome, Mitochondrial
;
Humans
;
India
;
Malaria, Falciparum/parasitology
;
Molecular Sequence Data
;
Plasmodium falciparum/*genetics/isolation & purification
;
Sequence Analysis, DNA
;
Sequence Homology, Nucleic Acid
3.Evolution of Genetic Polymorphisms of Plasmodium falciparum Merozoite Surface Protein (PfMSP) in Thailand.
Jiraporn KUESAP ; Wanna CHAIJAROENKUL ; Kanchanok KETPRATHUM ; Puntanat TATTIYAPONG ; Kesara NA-BANGCHANG
The Korean Journal of Parasitology 2014;52(1):105-109
Plasmodium falciparum malaria is a major public health problem in Thailand due to the emergence of multidrug resistance. The understanding of genetic diversity of malaria parasites is essential for developing effective drugs and vaccines. The genetic diversity of the merozoite surface protein-1 (PfMSP-1) and merozoite surface protein-2 (PfMSP-2) genes was investigated in a total of 145 P. falciparum isolates collected from Mae Sot District, Tak Province, Thailand during 3 different periods (1997-1999, 2005-2007, and 2009-2010). Analysis of genetic polymorphisms was performed to track the evolution of genetic change of P. falciparum using PCR. Both individual genes and their combination patterns showed marked genetic diversity during the 3 study periods. The results strongly support that P. falciparum isolates in Thailand are markedly diverse and patterns changed with time. These 2 polymorphic genes could be used as molecular markers to detect multiple clone infections and differentiate recrudescence from reinfection in P. falciparum isolates in Thailand.
Antigens, Protozoan/*genetics
;
DNA, Protozoan/genetics
;
Evolution, Molecular
;
Humans
;
Malaria, Falciparum/parasitology
;
Merozoite Surface Protein 1/*genetics
;
Plasmodium falciparum/*classification/*genetics/isolation & purification
;
Polymerase Chain Reaction
;
*Polymorphism, Genetic
;
Protozoan Proteins/*genetics
;
Thailand
4.Imported Malaria in United Arab Emirates: Evaluation of a New DNA Extraction Technique Using Nested PCR.
Doaa M SULTAN ; Marwa M KHALIL ; Ahmed S ABDOUH ; Wafaa F DOLEH ; Abdul Aziz M AL MUTHANNA
The Korean Journal of Parasitology 2009;47(3):227-233
Local malaria transmission in the United Arab Emirates (UAE) came to an end in 1997. Nevertheless, UAE has been subjected to substantial importation of malaria cases from abroad, concerning both UAE nationals and immigrants from malarious countries with a total number of 2,119 cases in 2007. To evaluate a new DNA extraction technique using nested PCR, blood samples were collected from 132 individuals who presented to Infectious Diseases Department in Rashid Hospital, Dubai, and Central Department of Malaria Control with fever and persistent headache. Giemsa-stained blood films and ELISA test for malaria antibodies were carried out for detection of Plasmodium infection. Plasmodium infections were identified with the genus-specific primer set and species differentiation using nested PCR. A rapid procedure for diagnosis of malaria infections directly from dried blood spots using for the first time DNA extract from FTA Elute cards was evaluated in contrast to extraction techniques using FTA classic cards and rapid boiling technique. Our new simple technique for DNA extraction using FTA Elute cards was very sensitive giving a sensitivity of 100% compared to 94% using FTA classic cards and 62% in the rapid boiling technique. No complex preparation of blood samples was required prior to the amplification. The production cost of DNA isolation in our PCR assay was much less in comparable to that of other DNA extraction protocols. The nested PCR detected plasmodial infection and could differentiate P. falciparum from P. vivax, and also detected the mixed infection.
Animals
;
DNA, Protozoan/genetics/*isolation & purification
;
*Emigrants and Immigrants/statistics & numerical data
;
*Genetic Techniques
;
Humans
;
Malaria, Falciparum/epidemiology/*parasitology
;
Plasmodium falciparum/genetics/*isolation & purification
;
Polymerase Chain Reaction/*methods
;
United Arab Emirates/epidemiology
5.Imported Malaria in United Arab Emirates: Evaluation of a New DNA Extraction Technique Using Nested PCR.
Doaa M SULTAN ; Marwa M KHALIL ; Ahmed S ABDOUH ; Wafaa F DOLEH ; Abdul Aziz M AL MUTHANNA
The Korean Journal of Parasitology 2009;47(3):227-233
Local malaria transmission in the United Arab Emirates (UAE) came to an end in 1997. Nevertheless, UAE has been subjected to substantial importation of malaria cases from abroad, concerning both UAE nationals and immigrants from malarious countries with a total number of 2,119 cases in 2007. To evaluate a new DNA extraction technique using nested PCR, blood samples were collected from 132 individuals who presented to Infectious Diseases Department in Rashid Hospital, Dubai, and Central Department of Malaria Control with fever and persistent headache. Giemsa-stained blood films and ELISA test for malaria antibodies were carried out for detection of Plasmodium infection. Plasmodium infections were identified with the genus-specific primer set and species differentiation using nested PCR. A rapid procedure for diagnosis of malaria infections directly from dried blood spots using for the first time DNA extract from FTA Elute cards was evaluated in contrast to extraction techniques using FTA classic cards and rapid boiling technique. Our new simple technique for DNA extraction using FTA Elute cards was very sensitive giving a sensitivity of 100% compared to 94% using FTA classic cards and 62% in the rapid boiling technique. No complex preparation of blood samples was required prior to the amplification. The production cost of DNA isolation in our PCR assay was much less in comparable to that of other DNA extraction protocols. The nested PCR detected plasmodial infection and could differentiate P. falciparum from P. vivax, and also detected the mixed infection.
Animals
;
DNA, Protozoan/genetics/*isolation & purification
;
*Emigrants and Immigrants/statistics & numerical data
;
*Genetic Techniques
;
Humans
;
Malaria, Falciparum/epidemiology/*parasitology
;
Plasmodium falciparum/genetics/*isolation & purification
;
Polymerase Chain Reaction/*methods
;
United Arab Emirates/epidemiology
6.Usefulness of the recombinant liver stage antigen-3 for an early serodiagnosis of Plasmodium falciparum infection.
Hyeong Woo LEE ; Sung Ung MOON ; Hye Sun RYU ; Yeon Joo KIM ; Shin Hyeong CHO ; Gyung Tae CHUNG ; Khin LIN ; Byoung Kuk NA ; Yoon KONG ; Kyung Suk CHUNG ; Tong Soo KIM
The Korean Journal of Parasitology 2006;44(1):49-54
In order to develop tools for an early serodiagnosis of Plasmodium falciparum infection, we evaluated the usefulness of P. falciparum liver stage antigen-3 (LSA-3) as a serodiagnostic antigen. A portion of LSA-3 gene was cloned, and its recombinant protein (rLSA-3) was expressed in Escherichia coli and purified by column chromatography. The purified rLSA-3 and 120 test blood/serum samples collected from inhabitants in malaria-endemic areas of Mandalay, Myanmar were used for this study. In microscopic examinations of blood samples, P. falciparum positive rate was 39.1% (47/120) in thin smear trials, and 33.3% (40/120) in thick smear trials. Although the positive rate associated with the rLSA-3 (30.8%) was lower than that of the blood stage antigens (70.8%), rLSA-3 based enzyme-linked immunosorbent assay could detect 12 seropositive cases (10.0%), in which blood stage antigens were not detected. These results indicate that the LSA-3 is a useful antigen for an early serodiagnosis of P. falciparum infection.
Recombinant Proteins/biosynthesis/genetics/*immunology
;
Plasmodium vivax/isolation & purification
;
Plasmodium falciparum/*immunology
;
Molecular Sequence Data
;
Malaria, Falciparum/blood/*diagnosis
;
Humans
;
Genes, Protozoan/genetics/immunology
;
Fluorescent Antibody Technique, Direct/methods
;
Escherichia coli/genetics
;
Enzyme-Linked Immunosorbent Assay/methods
;
Early Diagnosis
;
DNA, Protozoan/chemistry
;
DNA Primers/chemistry
;
Cloning, Molecular/methods
;
Base Sequence
;
Antigens, Protozoan/biosynthesis/chemistry/genetics/*immunology
;
Animals
;
Amino Acid Sequence
7.Sequence analysis and genotypes of glutamate rich protein of Plasmodium falciparum isolates from different malaria endemic areas in China.
Xin-Ping ZHU ; Xin-Mei ZHANG ; Lei ZHOU ; Ya-Ping YANG ; Xin GAO
Biomedical and Environmental Sciences 2002;15(1):1-7
OBJECTIVETo sequence the gene encoding glutamate rich protein (GLURP) and identify the genotypes of geographically different Plasmodium falciparum (P. f) isolates from China.
METHODSThe gene of R2 repeat region of GLURP was amplified by nested polymerase chain reaction and cloned into T-vector. The nucleotide sequence of GLURP gene was determined by automatic sequencer (Dideoxy termination method) and analyzed by DNA Star software.
RESULTSAt least 7 different GLURP genotypes ranging from 600 bp to 1,500 bp were found in Yunnan and Hainan provinces. R2 region of GLURP gene consisted of several repeat units. Each repeat unit was composed of 19-20 residues which were shown to be highly conserved. GLURP gene was also size polymorphic due to differences in the number of repeat units, whereas the repeat sequence was conserved. Sequence analysis showed that DNA sequences and deduced amino acid sequences were highly homologous among the geographically dispersed isolates or various isolates from the same geographical region. No obvious differences were found in the GLURP gene sequences among geographically different isolates.
CONCLUSIONGLURP gene is highly structure conserved and size polymorphic, and so is useful in searching for malaria vaccine candidate antigen and developing a genotyping method for malaria research.
Amino Acid Sequence ; Animals ; China ; epidemiology ; DNA, Bacterial ; genetics ; Genotype ; Geography ; Malaria ; epidemiology ; genetics ; Malaria Vaccines ; Molecular Sequence Data ; Plasmodium falciparum ; genetics ; isolation & purification ; pathogenicity ; Polymorphism, Genetic ; Protozoan Proteins ; genetics ; Sequence Analysis, DNA
8.Genetic diversity in merozoite surface protein (MSP)-1 and MSP-2 genes of Plasmodium falciparum in a major endemic region of Iran.
Aliehsan HEIDARI ; Hossein KESHAVARZ ; Mohammad B ROKNI ; Tomas JELINEK
The Korean Journal of Parasitology 2007;45(1):59-63
Merozoite surface protein-1 (MSP-1) and merozoite surface protein-2 (MSP-2) were used to develop vaccines and to investigate the genetic diversity in Plasmodium falciparum malaria in Iran. Nested polymerase chain reaction amplification was used to determine polymorphisms of block 2 of the MSP-1 and the central domain of MSP-2 genes. A total of 67 microscopically positive P. falciparum infected individuals from a major endemic region, southeast Iran, were included in this trial. Nine alleles of MSP-1 and 11 alleles of MSP-2 were identified. The results showed that amplified product from these surface antigen genes varied in size and there was specific pattern for each isolate. Besides, regarding this pattern, 23 multiple infections with at least 2 alleles were observed. While the endemic regions of malaria in Iran is classified in low to moderate group, but extensive polymorphism was observed for each marker and the MSP-2 central repeat was the most diverse that could be considered in designing malaria vaccine.
Adolescent
;
Adult
;
Animals
;
Antigens, Protozoan/*genetics
;
Child
;
Child, Preschool
;
*Endemic Diseases
;
Female
;
Genetic Variation
;
Humans
;
Iran/epidemiology
;
Malaria, Falciparum/*epidemiology/*parasitology
;
Male
;
Merozoite Surface Protein 1/*genetics
;
Middle Aged
;
Plasmodium falciparum/*genetics/immunology/isolation & purification
;
Polymerase Chain Reaction/methods
;
Polymorphism, Genetic
;
Protozoan Proteins/*genetics
9.Genetic diversity in merozoite surface protein (MSP)-1 and MSP-2 genes of Plasmodium falciparum in a major endemic region of Iran.
Aliehsan HEIDARI ; Hossein KESHAVARZ ; Mohammad B ROKNI ; Tomas JELINEK
The Korean Journal of Parasitology 2007;45(1):59-63
Merozoite surface protein-1 (MSP-1) and merozoite surface protein-2 (MSP-2) were used to develop vaccines and to investigate the genetic diversity in Plasmodium falciparum malaria in Iran. Nested polymerase chain reaction amplification was used to determine polymorphisms of block 2 of the MSP-1 and the central domain of MSP-2 genes. A total of 67 microscopically positive P. falciparum infected individuals from a major endemic region, southeast Iran, were included in this trial. Nine alleles of MSP-1 and 11 alleles of MSP-2 were identified. The results showed that amplified product from these surface antigen genes varied in size and there was specific pattern for each isolate. Besides, regarding this pattern, 23 multiple infections with at least 2 alleles were observed. While the endemic regions of malaria in Iran is classified in low to moderate group, but extensive polymorphism was observed for each marker and the MSP-2 central repeat was the most diverse that could be considered in designing malaria vaccine.
Adolescent
;
Adult
;
Animals
;
Antigens, Protozoan/*genetics
;
Child
;
Child, Preschool
;
*Endemic Diseases
;
Female
;
Genetic Variation
;
Humans
;
Iran/epidemiology
;
Malaria, Falciparum/*epidemiology/*parasitology
;
Male
;
Merozoite Surface Protein 1/*genetics
;
Middle Aged
;
Plasmodium falciparum/*genetics/immunology/isolation & purification
;
Polymerase Chain Reaction/methods
;
Polymorphism, Genetic
;
Protozoan Proteins/*genetics
10.Plasmodium falciparum Genotype Diversity in Artemisinin Derivatives Treatment Failure Patients along the Thai-Myanmar Border.
Kanungnit CONGPUONG ; Thirasak HOONCHAIYAPOOM ; Kornnarin INORN
The Korean Journal of Parasitology 2014;52(6):631-637
Genetic characteristics of Plasmodium falciparum may play a role in the treatment outcome of malaria infection. We have studied the association between diversity at the merozoite surface protein-1 (msp-1), msp-2, and glutamate-rich protein (glurp) loci and the treatment outcome of uncomplicated falciparum malaria patients along the Thai-Myanmar border who were treated with artemisinin derivatives combination therapy. P. falciparum isolates were collected prior to treatment from 3 groups of patients; 50 cases of treatment failures, 50 recrudescences, and 56 successful treatments. Genotyping of the 3 polymorphic markers was analyzed by nested PCR. The distribution of msp-1 alleles was significantly different among the 3 groups of patients but not the msp-2 and glurp alleles. The allelic frequencies of K1 and MAD20 alleles of msp1 gene were higher while RO33 allele was significantly lower in the successful treatment group. Treatment failure samples had a higher median number of alleles as compared to the successful treatment group. Specific genotypes of msp-1, msp-2, and glurp were significantly associated with the treatment outcomes. Three allelic size variants were significantly higher among the isolates from the treatment failure groups, i.e., K1270-290, 3D7610-630, G650-690, while 2 variants, K1150-170, and 3D7670-690 were significantly lower. In conclusion, the present study reports the differences in multiplicity of infection and distribution of specific alleles of msp-1, msp-2, and glurp genes in P. falciparum isolates obtained from treatment failure and successful treatment patients following artemisinin derivatives combination therapy.
Adult
;
Antigens, Protozoan/genetics
;
Antimalarials/*therapeutic use
;
Artemisinins/*therapeutic use
;
Female
;
Gene Frequency
;
*Genetic Variation
;
Genotype
;
Humans
;
Malaria, Falciparum/*drug therapy/*parasitology
;
Male
;
Merozoite Surface Protein 1/genetics
;
Myanmar
;
Plasmodium falciparum/*classification/*genetics/isolation & purification
;
Polymerase Chain Reaction
;
Protozoan Proteins/genetics
;
Thailand
;
Treatment Failure