1.Effect of Farnesyltransferase Inhibitor R115777 on Mitochondria of Plasmodium falciparum.
Young Ran HA ; Bae Geun HWANG ; Yeonchul HONG ; Hye Won YANG ; Sang Joon LEE
The Korean Journal of Parasitology 2015;53(4):421-430
The parasite Plasmodium falciparum causes severe malaria and is the most dangerous to humans. However, it exhibits resistance to their drugs. Farnesyltransferase has been identified in pathogenic protozoa of the genera Plasmodium and the target of farnesyltransferase includes Ras family. Therefore, the inhibition of farnesyltransferase has been suggested as a new strategy for the treatment of malaria. However, the exact functional mechanism of this agent is still unknown. In addition, the effect of farnesyltransferase inhibitor (FTIs) on mitochondrial level of malaria parasites is not fully understood. In this study, therefore, the effect of a FTI R115777 on the function of mitochondria of P. falciparum was investigated experimentally. As a result, FTI R115777 was found to suppress the infection rate of malaria parasites under in vitro condition. It also reduces the copy number of mtDNA-encoded cytochrome c oxidase III. In addition, the mitochondrial membrane potential (DeltaPsim) and the green fluorescence intensity of MitoTracker were decreased by FTI R115777. Chloroquine and atovaquone were measured by the mtDNA copy number as mitochondrial non-specific or specific inhibitor, respectively. Chloroquine did not affect the copy number of mtDNA-encoded cytochrome c oxidase III, while atovaquone induced to change the mtDNA copy number. These results suggest that FTI R115777 has strong influence on the mitochondrial function of P. falciparum. It may have therapeutic potential for malaria by targeting the mitochondria of parasites.
Antimalarials/*pharmacology
;
Enzyme Inhibitors/*pharmacology
;
Farnesyltranstransferase/*antagonists & inhibitors/genetics/*metabolism
;
Humans
;
Malaria, Falciparum/drug therapy/*parasitology
;
Mitochondria/*drug effects/metabolism
;
Plasmodium falciparum/drug effects/*enzymology/genetics
;
Protozoan Proteins/*antagonists & inhibitors/genetics/metabolism
;
Quinolones/*pharmacology
2.Dynamin like protein 1 participated in the hemoglobin uptake pathway of Plasmodium falciparum.
Hong-chang ZHOU ; Yu-hui GAO ; Xiang ZHONG ; Heng WANG
Chinese Medical Journal 2009;122(14):1686-1691
BACKGROUNDDuring the blood stage of malaria infection, parasites internalize in the host red blood cells and degrade massive amounts of hemoglobin for their development. Although the morphology of the parasite's hemoglobin uptake pathway has been clearly observed, little has been known about its molecular mechanisms.
METHODSThe recombinant proteins from Plasmodium falciparum, dynamin like protein 1 (PfDYN1) and 2 (PfDYN2) GTPase domain, were expressed in E.coli and showed GTPase activity. By using a dynamin inhibitor, dynasore, we demonstrated the involvement of PfDYN1 in the hemoglobin uptake pathway.
RESULTSThe GTPase activity of the two recombinant proteins was inhibited by dynasore in vitro. Treatment of parasite cultures with 80 micromol/L dynasore at the ring and early trophozoite stage resulted in substantial inhibition of parasite growth and in an obvious decline of hemoglobin quantum. Furthermore, reduced intracellular hemozoin accumulation and decreased uptake of the FITC-dextran were also observed, together with distinctive changes in the ultrastructure of parasites after the dynasore treatment.
CONCLUSIONSOur results show that PfDYN1 plays an important role in the hemoglobin uptake pathway of P. falciparum and suggest its possibility of being a novel target for malaria chemotherapy.
Animals ; Antimalarials ; pharmacology ; Dynamins ; antagonists & inhibitors ; GTP Phosphohydrolases ; genetics ; metabolism ; Hemoglobins ; metabolism ; Hydrazones ; pharmacology ; Malaria, Falciparum ; metabolism ; Microscopy, Electron, Transmission ; Plasmodium falciparum ; drug effects ; metabolism ; ultrastructure ; Protozoan Proteins ; genetics ; metabolism ; Recombinant Proteins ; genetics ; metabolism
3.Expression of Exogenous Human Hepatic Nuclear Factor-1alpha by a Lentiviral Vector and Its Interactions with Plasmodium falciparum Subtilisin-Like Protease 2.
Shunyao LIAO ; Yunqiang LIU ; Bing ZHENG ; Pyo Yun CHO ; Hyun Ok SONG ; Yun Seok LEE ; Suk Yul JUNG ; Hyun PARK
The Korean Journal of Parasitology 2011;49(4):431-436
The onset, severity, and ultimate outcome of malaria infection are influenced by parasite-expressed virulence factors as well as by individual host responses to these determinants. In both humans and mice, liver injury follows parasite entry, persisting to the erythrocytic stage in the case of infection with the fatal strain of Plasmodium falciparum. Hepatic nuclear factor (HNF)-1alpha is a master regulator of not only the liver damage and adaptive responses but also diverse metabolic functions. In this study, we analyzed the expression of host HNF-1alpha in relation to malaria infection and evaluated its interaction with the 5'-untranslated region of subtilisin-like protease 2 (subtilase, Sub2). Recombinant human HNF-1alpha expressed by a lentiviral vector (LV HNF-1alpha) was introduced into mice. Interestingly, differences in the activity of the 5'-untranslated region of the Pf-Sub2 promoter were detected in 293T cells, and LV HNF-1alpha was observed to influence promoter activity, suggesting that host HNF-1alpha interacts with the Sub2 gene.
5' Untranslated Regions/*genetics
;
Animals
;
Cell Line
;
DNA, Protozoan/genetics
;
Gene Expression Regulation/*genetics
;
Genetic Vectors
;
Hepatocyte Nuclear Factor 1-alpha/administration & dosage/genetics/*metabolism
;
Host-Parasite Interactions
;
Humans
;
Injections, Intravenous
;
Lentivirus/genetics
;
Malaria, Falciparum/metabolism/*parasitology/pathology
;
Mice
;
Plasmodium falciparum/drug effects/*genetics
;
Promoter Regions, Genetic/genetics
;
RNA, Messenger/genetics
;
RNA, Protozoan/genetics
;
Recombinant Proteins
;
Signal Transduction
;
Subtilisins/*genetics/metabolism
4.Malaria parasite carbonic anhydrase: inhibition of aromatic/heterocyclic sulfonamides and its therapeutic potential.
Sudaratana R KRUNGKRAI ; Jerapan KRUNGKRAI
Asian Pacific Journal of Tropical Biomedicine 2011;1(3):233-242
Plasmodium falciparum (P. falciparum) is responsible for the majority of life-threatening cases of human malaria, causing 1.5-2.7 million annual deaths. The global emergence of drug-resistant malaria parasites necessitates identification and characterization of novel drug targets and their potential inhibitors. We identified the carbonic anhydrase (CA) genes in P. falciparum. The pfCA gene encodes anα-carbonic anhydrase, a Zn(2+)-metalloenzme, possessing catalytic properties distinct from that of the human host CA enzyme. The amino acid sequence of the pfCA enzyme is different from the analogous protozoan and human enzymes. A library of aromatic/heterocyclic sulfonamides possessing a large diversity of scaffolds were found to be very good inhibitors for the malarial enzyme at moderate-low micromolar and submicromolar inhibitions. The structure of the groups substituting the aromatic-ureido- or aromatic-azomethine fragment of the molecule and the length of the parent sulfonamide were critical parameters for the inhibitory properties of the sulfonamides. One derivative, that is, 4- (3, 4-dichlorophenylureido)thioureido-benzenesulfonamide (compound 10) was the most effective in vitro Plasmodium falciparum CA inhibitor, and was also the most effective antimalarial compound on the in vitro P. falciparum growth inhibition. The compound 10 was also effective in vivo antimalarial agent in mice infected with Plasmodium berghei, an animal model of drug testing for human malaria infection. It is therefore concluded that the sulphonamide inhibitors targeting the parasite CA may have potential for the development of novel therapies against human malaria.
Animals
;
Antimalarials
;
pharmacology
;
therapeutic use
;
Carbonic Anhydrase Inhibitors
;
pharmacology
;
therapeutic use
;
Carbonic Anhydrases
;
chemistry
;
genetics
;
metabolism
;
Catalysis
;
Genome, Protozoan
;
Genomics
;
Humans
;
Life Cycle Stages
;
Malaria, Falciparum
;
drug therapy
;
parasitology
;
Parasites
;
drug effects
;
enzymology
;
Plasmodium falciparum
;
drug effects
;
enzymology
;
genetics
;
growth & development
;
Protein Conformation
;
Sulfonamides
;
pharmacology
;
therapeutic use
5.Comparison of protein patterns between Plasmodium falciparum mutant clone T9/94-M1-1(b3) induced by pyrimethamine and the original parent clone T9/94.
Kanchana RUNGSIHIRUNRAT ; Wanna CHAIJAROENKUL ; Napaporn SIRIPOON ; Aree SEUGORN ; Sodsri THAITHONG ; Kesara NA-BANGCHANG
Asian Pacific Journal of Tropical Biomedicine 2012;2(1):66-69
OBJECTIVETo compare the protein patterns from the extracts of the mutant clone T9/94-M1-1(b3) induced by pyrimethamine, and the original parent clone T9/94 following separation of parasite extracts by two-dimensional electrophoresis (2-DE).
METHODSProteins were solubilized and separated according to their charges and sizes. The separated protein spots were then detected by silver staining and analyzed for protein density by the powerful image analysis software.
RESULTSDifferentially expressed protein patterns (up- or down-regulation) were separated from the extracts from the two clones. A total of 223 and 134 protein spots were detected from the extracts of T9/94 and T9/94-M1-1(b3) clones, respectively. Marked reduction in density of protein expression was observed with the extract from the mutant (resistant) clone compared with the parent (sensitive) clone. A total of 25 protein spots showed at least two-fold difference in density, some of which exhibited as high as ten-fold difference.
CONCLUSIONSThese proteins may be the molecular targets of resistance of Plasmodium falciparum to pyrimethamine. Further study to identify the chemical structures of these proteins by mass spectrometry is required.
Antimalarials ; metabolism ; Drug Resistance ; Electrophoresis, Gel, Two-Dimensional ; Humans ; Image Processing, Computer-Assisted ; Mutation ; Plasmodium falciparum ; chemistry ; drug effects ; genetics ; Proteome ; analysis ; Protozoan Proteins ; analysis ; Pyrimethamine ; metabolism ; Staining and Labeling