1.Understanding the pharmacokinetics of prodrug and metabolite
Translational and Clinical Pharmacology 2018;26(1):1-5
This tutorial explains the pharmacokinetics of a prodrug and its active metabolite (or parent drug) using a two-step, consecutive, first-order irreversible reaction as a basic model for prodrug metabolism. In this model, the prodrug is metabolized and produces the parent drug, which is subsequently eliminated. The mathematical expressions for pharmacokinetic parameters were derived step by step. In addition, we visualized these expressions to help understand the relationship between pharmacokinetic parameters easily. For the elimination rate-limited and formation rate-limited metabolism, we analyzed the plasma drug concentration versus time curve of a prodrug administered intravenously.
Humans
;
Metabolism
;
Parents
;
Pharmacokinetics
;
Plasma
2.Advances in plasma proteome analysis in liver diseases.
Chinese Journal of Hepatology 2007;15(1):76-77
Humans
;
Liver Diseases
;
blood
;
Plasma
;
metabolism
;
Proteome
4.Targeting Glutamine Metabolism for Cancer Treatment
Yeon Kyung CHOI ; Keun Gyu PARK
Biomolecules & Therapeutics 2018;26(1):19-28
Rapidly proliferating cancer cells require energy and cellular building blocks for their growth and ability to maintain redox balance. Many studies have focused on understanding how cancer cells adapt their nutrient metabolism to meet the high demand of anabolism required for proliferation and maintaining redox balance. Glutamine, the most abundant amino acid in plasma, is a well-known nutrient used by cancer cells to increase proliferation as well as survival under metabolic stress conditions. In this review, we provide an overview of the role of glutamine metabolism in cancer cell survival and growth and highlight the mechanisms by which glutamine metabolism affects cancer cell signaling. Furthermore, we summarize the potential therapeutic approaches of targeting glutamine metabolism for the treatment of numerous types of cancer.
Cell Survival
;
Glutamine
;
Metabolism
;
Oxidation-Reduction
;
Plasma
;
Stress, Physiological
5.Plasma Acylcarnitine and Urinary Organic Acid Profiling for the diagnosis of Fatty Acid Oxidation Disorder and Organic Acidurias using tandem mass spectrometry (MS/MS) and gas chromatography tandem with mass spectrometry (GC-MS): a retrospective study.
Sheryl D. Apacible ; Cristine P. Lopez ; BeaDavee Marie H. Somozo ; Dahlia C. Apodaca
Philippine Journal of Health Research and Development 2023;27(2):1-
INTRODUCTION:
Acylcarnitines in plasma and urinary organic acids are essential diagnostic markers for some Inborn Errors of Metabolism (IEM) such as fatty acid oxidation disorders, and disorders related to organic acids metabolism. By virtue of R. A. 9288, Filipino newborn babies are screened for inherited metabolic disorders via the analysis of dried blood spots (DBS) using MS/MS.
OBJECTIVE:
This study aimed to establish the plasma acylcarnitine (PLAC) and urinary organic acid (UOA) profiles of Filipino newborn babies screened at high risk for IEMS using MS/MS and single quadrupole GC-MS analytical techniques. Further, this study describes the process of determining the true positive cases of fatty acid oxidation disorders and some organic acidurias among screened Filipino newborn babies using different sample types such as plasma and urine via flow injection analysis with tandem mass spectrometry (FIA-MS/MS) and another technique such as gas chromatography in tandem with mass spectrometry (GC-MS).
METHODOLOGY:
Plasma acylcarnitine and urinary organic acid analyses were performed using Waters® MS/MS and Agilent® single quadrupole GC-MS, respectively. Results obtained from PLAC and UOA databases and IEM registry of the Biochemical Genetics Laboratory (BGL) covering the period 2015-2021 were utilized to account for the number of confirmed cases out of the total number screened positive for IEMs. Descriptive statistics was also used to evaluate the detection rates of FAODs and Organic Acidurias in Filipino newborn babies screened to be high risk.
RESULTS:
Plasma acylcarnitine analysis was introduced by BGL only in 2015. Data from 2015-2021, indicated 176 true positives out of 1642 babies screened at high risk for FAODs and organic acidurias. The use of plasma and urine samples for measurements in MS/MS and GC-MS yielded a detection rate of 10.7% with 104 Filipino newborn babies afflicted with fatty acid oxidation disorders (FAOD) while 72 were found to be confirmed cases of organic acidurias. Medium-chain acyl-CoA dehydrogenase (MCAD) deficiency was reported to be the most common FAOD with 67 cases. Organic acidurias such as glutaric aciduria type 1 and 3-Methylcrotonyl-CoA carboxylase (3-MCC) deficiency were found to be common with 34 and 26 true positives, respectively.
CONCLUSION
The plasma acylcarnitine and urinary organic acid profiles of Filipino newborn babies with fatty acid oxidation disorders and organic acidurias obtained via MS/MS and GC/MS, respectively, were presented in this paper. This study emphasizes the importance of conducting confirmatory testing to establish the true positives from among those Filipino newborns flagged to be at high risk for FAODs or organic aciduria. The confirmatory tests are based on the use of different samples such as urine and plasma in order to detect and quantify biomarkers for FAODs and organic acidurias using two different analytical techniques such as MS/MS and GC-MS. This study warrants further studies directed towards the validation of analytical methodologies for targeted measurements of biomarkers of IEMS in urine and plasma of newborn babies to increase the efficiency of establishing true positives and to determine the efficiency of administration of interventions on Filipino children with genetic disabilities, that is, for monitoring purposes.
plasma
;
inborn error of metabolism
;
tandem mass spectrometry
;
GC-MS
6.Progress on treatment of tendinopathy with platelet-enriched plasma.
Zefeng ZHENG ; Huihui LE ; Weishan CHEN ; Weiliang SHEN ; Hongwei OUYANG
Journal of Zhejiang University. Medical sciences 2016;45(2):179-186
Platelet-enriched plasma (PRP) contains high concentration of platelets and abundant growth factors, which is made by centrifuging of blood and separating of blood elements. PRP promotes tendon repair by releasing various cytokines to enhance cell proliferation, tenogenic differentiation, formation and secretion of matrix; meantime, it can reduce pain by inhibiting the expression of pain-associated molecules. A number of clinical studies demonstrated that PRP was effective in treatment of tendinopathy, including patellar tendinopathy, lateral epicondylitis and plantar fasciopathy. However, some studies did not support this conclusion, because of disparity of PRP types, therapeutic courses and injections protocols in clinical application. Based on its safety, PRP can be a choice of treatment for tendinopathy, in case other non-surgical therapies are of no effect.
Blood Platelets
;
cytology
;
Cytokines
;
metabolism
;
Humans
;
Intercellular Signaling Peptides and Proteins
;
metabolism
;
Platelet-Rich Plasma
;
Tendinopathy
;
therapy
7.Role of platelet-rich plasma in articular cartilage lesions.
Ming LI ; Junhui ZHANG ; Qunhua JIN ; Jianmin LI ; Zhiyong HE ; Zhenglin DI
Chinese Medical Journal 2014;127(22):3987-3992
8.Detection of free DNA septin 9 gene methylation in plasma.
Zhi LUO ; Yingbin HU ; Xiaoyun PU
Journal of Central South University(Medical Sciences) 2021;46(2):127-134
OBJECTIVES:
To explore the correlation between cytosine-phosphoric-guanylic (CpG) site of Septin 9 gene and colorectal cancer, and to develop a real-time PCR detection system in plasma in patients with colorectal cancer.
METHODS:
The methylation of training samples was detected by high-throughput sequencing technology, and the sites highly consistent with the clinical information of colorectal cancer were identified. Then the detection system of real-time PCR was designed to analyze the consistency of plasma and tissue based on methylationa sensitive enzyme digestion. Finally, 100 clinical trials were conducted to evaluate the performance of the detection system with the methylation sensitive enzyme digestion-real-time PCR.
RESULTS:
The highly consistent sites, which were selected by high-throughput sequencing from 71 training set samples, was the 38th CpG. Based on the detection region, the screened methylation sensitive enzymes were
CONCLUSIONS
The 38th CpG site of Septin 9 detected by the detection system of methylation sensitive enzyme digestion-real-time PCR can highly predict the occurrence of colorectal cancer with great clinical application value.
Colorectal Neoplasms/genetics*
;
CpG Islands/genetics*
;
DNA
;
DNA Methylation
;
Humans
;
Plasma/metabolism*
;
Septins/metabolism*
9.Proteins in sperm and seminal plasma associated with human sperm resistance to cryopreservation.
Xin-Zong ZHANG ; Cheng-Liang XIONG
National Journal of Andrology 2013;19(3):214-217
OBJECTIVETo identify the proteins that could improve the resistance of human sperm to cryopreservation using comparative proteomics.
METHODSA total of 31 semen samples from 10 donors were divided into a high recovery and a low recovery group. Differentially expressed proteins in sperm and seminal plasma were detected and compared between the two groups by two-dimensional differential gel electrophoresis and mass spectrometry.
RESULTSTotally, 22 differentially expressed proteins were found in the two groups, 12 seminal plasma proteins, 9 sperm proteins, and 1 belonging to both. These identified proteins were involved in the maturation, movement, energy metabolism, DNA repair and other activities of spermatozoa.
CONCLUSIONMany proteins were identified in sperm and seminal plasma that might influence the resistance of human sperm to cryopreservation.
Adult ; Cryopreservation ; Humans ; Male ; Proteomics ; Semen ; metabolism ; Seminal Plasma Proteins ; metabolism ; Sperm Motility ; Spermatozoa ; metabolism ; Young Adult
10.Mutating Escherichia coli by atmospheric and room temperature plasmas for succinic acid production from xylose.
Qing WAN ; Weijia CAO ; Changqing ZHANG ; Rongming LIU ; Liya LIANG ; Kequan CHEN ; Jiangfeng MA ; Min JIANG
Chinese Journal of Biotechnology 2013;29(11):1692-1695
Escherichia coli AFP111 is a spontaneous mutant with mutations in the glucose specific phosphotransferase system (ptsG) in NZN111 (delta pflAB deltaldhA). In AFP111, conversion of xylose to succinic acid generates 1.67 molecule of ATP per xylose. However, the strain needs 2.67 molecule ATP for xylose metabolism. Therefore, AFP111 cannot use xylose due to insufficient ATP under anaerobic condition. Through an atmospheric and room temperature plasma (ARTP) jet, we got a mutant strain named DC111 that could use xylose under anaerobic condition in M9 medium to produce succinic acid. After 72 h, DC111 consumed 10.52 g/L xylose to produce 6.46 g/L succinic acid, and the yield was 0.78 mol/mol. Furthermore, the reaction catalyzed by the ATP-generating PEP-carboxykinase (PCK) was enhanced. The specific activity of PCK was 19.33-fold higher in DC111 than that in AFP111, which made the strain have enough ATP to converse xylose to succinic acid.
Atmosphere
;
Escherichia coli
;
genetics
;
metabolism
;
Fermentation
;
Industrial Microbiology
;
Metabolic Engineering
;
Mutation
;
Plasma Gases
;
pharmacology
;
Succinic Acid
;
metabolism
;
Temperature
;
Xylose
;
metabolism