2.Progress in the plant GH3 gene family.
Tao SUN ; Tuanyao CHAI ; Geyu LIU ; Yuxiu ZHANG
Chinese Journal of Biotechnology 2008;24(11):1860-1866
Phytohormone auxins play important roles in plant growth and development. The primary auxin-response genes can be classified into three major groups: Aux/IAAs, SAURs and GH3s. Significant progress has been made in understanding these gene families by approaches of the functional genomics, molecular genetics and molecular biology. In this review, we focused on the structures, functions and models of the expressional regulation of plant GH3 genes. The interactions in the signal transduction pathways between auxins and other signals mediated by the GH3 genes, the relationship between the GH3 genes and the stress adaptation responses of plants are emphasized.
Arabidopsis Proteins
;
genetics
;
Gene Expression Regulation, Plant
;
Genes, Plant
;
Ligases
;
genetics
;
Multigene Family
;
Plant Growth Regulators
;
genetics
;
Soybean Proteins
;
genetics
3.Genome-wide identification of CsCCD gene family in tea plant (Camellia sinensis) and expression analysis of the oolong tea processing with supplementary LED light.
Zixin NI ; Qingyang WU ; Yun YANG ; Huili DENG ; Ziwei ZHOU ; Zhongxiong LAI ; Yun SUN
Chinese Journal of Biotechnology 2022;38(1):359-373
Carotenoid cleavage dioxygenase (CCD) family is important for production of volatile aromatic compounds and synthesis of plant hormones. To explore the biological functions and gene expression patterns of CsCCD gene family in tea plant, genome-wide identification of CsCCD gene family was performed. The gene structures, conserved motifs, chromosome locations, protein physicochemical properties, evolutionary characteristics, interaction network and cis-acting regulatory elements were predicted and analyzed. Real time-quantitative reverse transcription PCR (RT-qPCR) was used to detect the relative expression level of CsCCD gene family members under different leaf positions and light treatments during processing. A total of 11 CsCCD gene family members, each containing exons ranging from 1 to 11 and introns ranging from 0 to 10, were identified. The average number of amino acids and molecular weight were 519 aa and 57 643.35 Da, respectively. Phylogenetic analysis showed the CsCCD gene family was clustered into 5 major groups (CCD1, CCD4, CCD7, CCD8 and NCED). The CsCCD gene family mainly contained stress response elements, hormone response elements, light response elements and multi-factor response elements, and light response elements was the most abundant (142 elements). Expression analysis showed that the expression levels of CsCCD1 and CsCCD4 in elder leaves were higher than those in younger leaves and stems. With the increase of turning over times, the expression levels of CsCCD1 and CsCCD4 decreased, while supplementary LED light strongly promoted their expression levels in the early stage. The expression level of NCED in younger leaves was higher than that in elder leaves and stems on average, and the expression trend varied in the process of turning over. NCED3 first increased and then decreased, with an expression level 15 times higher than that in fresh leaves. In the late stage of turning over, supplementary LED light significantly promoted its gene expression. In conclusion, CsCCD gene family member expressions were regulated by mechanical force and light. These understandings may help to optimize tea processing techniques and improve tea quality.
Camellia sinensis/genetics*
;
Gene Expression Regulation, Plant
;
Phylogeny
;
Plant Leaves/genetics*
;
Plant Proteins/metabolism*
;
Tea
4.Screening and verification of proteins of Salvia miltiorrhiza polyphenol oxidase interaction.
Hai-Xing ZHANG ; Wang-Ke SHI ; Rong GUO ; Yue-Jin ZHANG ; Hong-Bo GUO
China Journal of Chinese Materia Medica 2020;45(11):2523-2532
Polyphenol oxidase(PPO) is an important antioxidant enzyme in plants. It has the functions of scavenging active oxygen and synthesizing phenols, lignin, and plant protection factors, and can enhance the plant's resistance to stress and resistance to pests and diseases. Our previous research found that Salvia miltiorrhiza PPO gene can positively regulate salvianolic acid B synthesis. In order to further explore the mechanism, a pGBKT7-PPO bait vector was constructed using the cloned S. miltiorrhiza polyphenol oxidase gene(SmPPO, GenBank accession number: KF712274.1), and verified that it had no self-activation and no toxicity. The titer of S. miltiorrhiza cDNA library constructed by our laboratory was 4.75 × 107 cfu·mL~(-1), which met the requirements for library construction. Through yeast two-hybrid test, 22 proteins that could interact with SmPPO were screened. Only yeast PAL1 and TAT interacted with SmPPO through yeast co-transformation verification. Further verification was performed by bimolecular fluorescence complementary detection(BiFC). Only TAT and SmPPO interacted, so it meant that TAT and SmPPO interacted. TAT and SmPPO were truncated according to the domain, respectively. The first 126 amino acids of SmPPO and tyrosine amino transferase(TAT) were obtained to interact on the cell membrane and chloroplast. SmPPO was obtained by subcellular localization test, which was mainly loca-lized on the nucleus and cell membrane; TAT was localized on the cell membrane. Real-time quantitative PCR results showed that the SmPPO gene was mainly expressed in roots and stems; the TAT gene was expressed in roots, and the expression level in stems and flowers was low. This article lays a solid foundation for the in-depth study of the molecular mechanism of the interaction of S. miltiorrhiza SmPPO and TAT to regulate the synthesis of phenolic substances.
Catechol Oxidase
;
Gene Expression Regulation, Plant
;
Gene Library
;
Plant Proteins
;
genetics
;
Plant Roots
;
Salvia miltiorrhiza
;
genetics
5.Mutant construction of HDA9 and its interactions with promoters of flowering integrator SOC1 and AGL24 in Brassica juncea.
Junli ZHANG ; Wei JIANG ; Shengnan LI ; Wenwen ZHOU ; Zhimin WANG ; Dayong WEI ; Hebing WANG ; Qinglin TANG
Chinese Journal of Biotechnology 2020;36(6):1170-1180
HDA9, a member of the deacetylase family, plays a vital role in regulating plant flowering time through flowering integrator SOC1 and AGL24. However, it remains elusive how HDA9 interacts with SOC1 and AGL24 in flowering time control. Here, HDA9 was cloned in Brassica juncea and then its three active sites were separately replaced with Ala via overlap extension PCR. Thus, mutants of HDA9(D172A), HDA9(H174A) and HDA9(D261A) were constructed and fused into the pGADT7 vector. The yeast one-hybrid assays indicated that HDA9 mutants remained the interactions with the promoters of SOC1 and AGL24. Furthermore, the aforementioned results were confirmed in the dual luciferase assays. Interestingly, the DNA-protein interactions were weakened significantly due to the mutation in the three active sites of HDA9. It suggested that flowering signal integrator SOC1 and AGL24 were regulated by the key amino acid residues of 172th, 174th and 261th in HDA9. Our results provide valuable information for the in-depth study of the biological function and molecular regulation of HDA9 in Brassica juncea flowering time control.
Flowers
;
genetics
;
Gene Expression Regulation, Plant
;
genetics
;
Mustard Plant
;
enzymology
;
genetics
;
Mutation
;
Plant Proteins
;
genetics
;
metabolism
;
Promoter Regions, Genetic
;
genetics
6.Agrobacterium-mediated transformation of LJAMP2 gene into 'Red Sun' kiwifruit and its molecular identification.
Yue ZHOU ; Xupeng ZHAO ; Xiuhua WU ; Yanling ZHANG ; Lin ZHANG ; Keming LUO ; Shaohu TANG
Chinese Journal of Biotechnology 2014;30(6):931-942
Bacterial canker caused by Pseudomonas syringae pv. Actinidiae is one of the most important diseases of kiwifruit (Actinidia chinensis) and leads to considerable yield losses. In order to obtain transgenic plants with resistance for 'Red Sun' kiwifruit to canker disease, a non-specific lipid transfer protein-like antimicrobial protein gene (LJAMP2) from motherwort (Leonurus japonicus) was introduced into 'Red Sun' kiwifruit through Agrobacterium-mediated transformation. After two days of co-cultivation with A. tumefaciens strain LBA4404 harboring 35S:LJAMP2, the transformed explants were transferred to the selection medium containing 25 mg/L kanamycin+3.0 mg/L BA+1.0 mg/L NAA. The regeneration efficiency of kanamycin-resistant shoots reached to 85%. All (100%) of kanamycin-resistant shoots rooted on half-strength MS medium supplemented with 0.8 mg/L IBA and a total of 40 regenerated plantlets were obtained. PCR and histochemical GUS activity analysis show that 23 of 40 lines (57.50%) were positive, suggesting that the LJAMP2 gene was integrated into the genome of 'Red Sun' kiwifruit. Taken together, we established an efficient genetic transformation method for 'Red Sun' kiwifruit using A. tumefaciens and the transformation frequency reached 5.11%. This protocol will be useful for the genetic breeding of 'Red Sun' kiwifruit for improvement of disease resistance.
Actinidia
;
genetics
;
Agrobacterium
;
Antigens, Plant
;
genetics
;
Carrier Proteins
;
genetics
;
Leonurus
;
Plant Proteins
;
genetics
;
Plants, Genetically Modified
;
genetics
;
Transformation, Genetic
7.Effect of ACC oxidase gene AhACOs on salt tolerance of peanut.
Jianbin HUANG ; Wenjie ZHOU ; Lei FANG ; Mingming SUN ; Xin LI ; Jingjing LI ; Xiaoting LI ; Yanyan TANG ; Defeng JIANG ; Hong ZHU ; Jiongming SUI ; Lixian QIAO
Chinese Journal of Biotechnology 2023;39(2):603-613
ACC oxidase (ACO) is one of the key enzymes that catalyze the synthesis of ethylene. Ethylene is involved in salt stress response in plants, and salt stress seriously affects the yield of peanut. In this study, AhACO genes were cloned and their functions were investigated with the aim to explore the biological function of AhACOs in salt stress response, and to provide genetic resources for the breeding of salt-tolerant varieties of peanut. AhACO1 and AhACO2 were amplified from the cDNA of salt-tolerant peanut mutant M29, respectively, and cloned into the plant expression vector pCAMBIA super1300. The recombinant plasmid was transformed into Huayu22 by pollen tube injection mediated by Agrobacterium tumefaciens. After harvest, the small slice cotyledon was separated from the kernel, and the positive seeds were screened by PCR. The expression of AhACO genes was analyzed by qRT-PCR, and the ethylene release was detected by capillary column gas chromatography. Transgenic seeds were sowed and then irrigated with NaCl solution, and the phenotypic changes of 21-day-seedings were recorded. The results showed that the growth of transgenic plants were better than that of the control group Huayu 22 upon salt stress, and the relative content of chlorophyll SPAD value and net photosynthetic rate (Pn) of transgenic peanuts were higher than those of the control group. In addition, the ethylene production of AhACO1 and AhACO2 transgenic plants were 2.79 and 1.87 times higher than that of control peanut, respectively. These results showed that AhACO1 and AhACO2 could significantly improve the salt stress tolerance of transgenic peanut.
Salt Tolerance/genetics*
;
Arachis/genetics*
;
Plant Breeding
;
Ethylenes/metabolism*
;
Plants, Genetically Modified/genetics*
;
Gene Expression Regulation, Plant
;
Plant Proteins/genetics*
8.Genome-wide identification of SUN gene family in Fragaria vesca and stresses-response analysis.
Yao YU ; Ziyao WANG ; Yiling XU ; Bojun MA ; Xifeng CHEN
Chinese Journal of Biotechnology 2023;39(2):724-740
SUN gene is a group of key genes regulating plant growth and development. Here, SUN gene families of strawberry were identified from the genome of the diploid Fragaria vesca, and their physicochemical properties, genes structure, evolution and genes expression were also analyzed. Our results showed that there were thirty-one FvSUN genes in F. vesca and the FvSUNs encoded proteins were classified into seven groups, and the members in the same group showed high similarity in gene structures and conservative motifs. The electronic subcellular localization of FvSUNs was mainly in the nucleus. Collinearity analysis showed that the members of FvSUN gene family were mainly expanded by segmental duplication in F. vesca, and Arabidopsis and F. vesca shared twenty-three pairs of orthologous SUN genes. According to the expression pattern in different tissues shown by the transcriptome data of F. vesca, the FvSUNs gene can be divided into three types: (1) expressed in nearly all tissues, (2) hardly expressed in any tissues, and (3) expressed in special tissues. The gene expression pattern of FvSUNs was further verified by quantitative real-time polymerase chain reaction (qRT-PCR). Additionally, the seedlings of F. vesca were treated by different abiotic stresses, and the expression level of 31 FvSUNs genes were assayed by qRT-PCR. The expression of most of the tested genes was induced by cold, high salt or drought stress. Our studies may facilitate revealing the biological function and molecular mechanism of SUN genes in strawberry.
Fragaria/metabolism*
;
Genes, Plant
;
Stress, Physiological/genetics*
;
Arabidopsis/genetics*
;
Plant Development
;
Gene Expression Regulation, Plant
;
Plant Proteins/metabolism*
9.Cloning and expression analysis of transcription factor gene DoWRKY1 in Dendrobium officinale.
Jun ZHAO ; Shi-wei SUN ; Can-can MENG ; Qing JIN ; Hong-hong FAN ; Yi LIN ; Yong-ping CAI
China Journal of Chinese Materia Medica 2015;40(14):2807-2813
WRKY transcription factors are novel transcriptional regulatory factors, which play an important role in regulating plant development, metabolism and other physiological processes. In this study, a new Dendrobium officinale WRKY transcription factor, designated as DoWRKY1 was cloned by using RT-PCR and RACE (GenBank Accession No. KF953910). Bioinformatic analysis demonstrated that, the full-length cDNA of DoWRKY1 was 1,704 bp. And DoWRKY1 contained a 1,629 bp open reading frame (ORF) that encoding a peptide of 542 amino acid residues. The putative DoWRKY1 protein contained two conserved WRKY domains and it belonged to the group I WRKY family protein. Yeast one-hybrid experiment showed that DoWRKY1 had transcriptional activation ability in yeast, and it could activate the expression of downstream report genes (His3 and Ade2). Semi-quantitative RT-PCR experiment showed that DoWRKY1 expressed in roots, stems, leaves and protocorm-like bodies. Real-time qRT-PCR proved that DoWRKY1 could be induced by methyl jasmonate (MeJA) and chitosan (Chitosan), and the expression level of this gene can reach the expression peak at 2 h and 1 h, respectively. These results are useful for further determination of the regulation function of this gene in secondary metabolism of D. officinale.
Cloning, Molecular
;
Dendrobium
;
genetics
;
Gene Expression Regulation, Plant
;
Plant Proteins
;
genetics
;
Transcription Factors
;
genetics
10.Lectins in Viscum:a progress review.
China Journal of Chinese Materia Medica 2021;46(14):3551-3559
Viscum plants,the evergreen perennial parasitic shrubs or subshrubs,are mainly distributed in tropical and subtropical regions. There are about 70 Viscum species around the world,including 11 species and one variety in China. Mistletoe lectins are typeⅡ ribosome-inactivating proteins( RIPs) extracted from Viscum plants with anticancer and immunoregulatory activities. Many studies have focused on the mistletoe lectins isolated from V. album in Europe and V. album var. coloratum distributed in South Korea,respectively,and several preparations,such as Iscucin Ⓡ,were developed and clinically applied for cancer treatment. Although Viscum plants are widely distributed in China,only a few studies of mistletoe lectins have been reported. The recent progress of mistletoe lectins was reviewed from extraction,purification,quantitative/qualitative detection,molecular structure,pharmacological activities,toxicities,and clinical application,aiming at providing a reference for in-depth research and utilization of mistletoe lectins produced in China.
Humans
;
Lectins
;
Plant Extracts
;
Plant Lectins
;
Plant Proteins/genetics*
;
Toxins, Biological
;
Viscum