1.Lectins in Viscum:a progress review.
China Journal of Chinese Materia Medica 2021;46(14):3551-3559
Viscum plants,the evergreen perennial parasitic shrubs or subshrubs,are mainly distributed in tropical and subtropical regions. There are about 70 Viscum species around the world,including 11 species and one variety in China. Mistletoe lectins are typeⅡ ribosome-inactivating proteins( RIPs) extracted from Viscum plants with anticancer and immunoregulatory activities. Many studies have focused on the mistletoe lectins isolated from V. album in Europe and V. album var. coloratum distributed in South Korea,respectively,and several preparations,such as Iscucin Ⓡ,were developed and clinically applied for cancer treatment. Although Viscum plants are widely distributed in China,only a few studies of mistletoe lectins have been reported. The recent progress of mistletoe lectins was reviewed from extraction,purification,quantitative/qualitative detection,molecular structure,pharmacological activities,toxicities,and clinical application,aiming at providing a reference for in-depth research and utilization of mistletoe lectins produced in China.
Humans
;
Lectins
;
Plant Extracts
;
Plant Lectins
;
Plant Proteins/genetics*
;
Toxins, Biological
;
Viscum
2.Advance in biosynthesis and metabolic regulation of ginkgolides.
China Journal of Chinese Materia Medica 2021;46(13):3288-3297
Ginkgolides,the unique terpenoids in Ginkgo biloba,have a significant effect on the prevention and treatment of cardiovascular and cerebrovascular diseases. Metabolic regulation and synthetic biology strategies are efficient methods to obtain high-quality ginkgolides. The present study reviewed the cloning and functions of genes related to the biosynthetic pathway of ginkgolides,as well as relevant studies of omics,genetic transformation,and metabolic regulation in recent years,and predicted the research trends and prospects,aiming to provide a reference for discovering the key genes related to the biosynthetic pathway and the biosynthesis of ginkgolides.
Ginkgo biloba/genetics*
;
Ginkgolides
;
Humans
;
Lactones
;
Plant Extracts
;
Terpenes
3.Mechanism and experimental verification of Dachengqi Decoction in treatment of sepsis based on network pharmacology.
Zhi-Hui FU ; Ling-Ling ZHAO ; Lin ZHOU ; Xin-Cun LI ; Xiao-Chuan ZHANG
China Journal of Chinese Materia Medica 2021;46(20):5351-5361
This study aims to predict the material basis and mechanism of Dachengqi Decoction in the treatment of sepsis based on network pharmacology. The chemical constituents and targets of Dachengqi Decoction were retrieved from TCMSP, UniPot and DrugBank and the targets for the treatment of sepsis from OMIM and GeneCards. The potential targets of Dachengqi Decoction for the treatment of sepsis were screened by OmicShare. STRING database and Cytoscape 3.7.2 were used to construct the Chinese medicinal-active component-target-disease, active component-key target-key pathway, and protein-protein interaction(PPT) networks. The gene ontology(GO) term enrichment analysis and Kyoto encyclopedia of genes and genomes(KEGG) pathway enrichment analysis were performed by DAVID(P<0.05). Finally, the animal experiment was conducted to verify some targets and pathways. A total of 40 active components and 157 targets of the Dachengqi Decoction, 2 407 targets for the treatment of sepsis, and 91 common targets of the prescription and the disease were also obtained. The key targets were prostaglandin G/H synthase 2(PTGS2), prostaglandin G/H synthase 1(PTGS1), protein kinase cAMP-dependent catalytic-α(PRKACA), coagulation factor 2 receptor(F2 R), phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic gamma subunit(PIK3 CG), dipeptidyl peptidase 4(DPP4), etc. A total of 533 terms and 125 pathways were obtained for the 91 targets. The main terms were the response to drug, negative regulation of apoptotic process, positive regulation of nitric oxide biosynthetic process and lipopolysaccharide-mediated signaling pathway, and the pathways included pathways in cancer, hepatitis B, and phosphatidylinositol 3-kinase and protein kinase B(PI3 K/Akt) signaling pathway. The animal experiment confirmed that Dachengqi Decoction can down-regulate inflammatory cytokines interleukin-1β(IL-1β), IL-6 and tumor necrosis factor α(TNF-α)(P<0.01). It could also reduce the wet/dry weight ratio of lung tissue, the level of myeloperoxidase(MPO) and the phosphorylation of PI3 K and Akt(P<0.01). These results indicated that Dchengqi Decoction could act on inflammation-related targets and improve sepsis by inhibiting PI3 K/Akt signaling pathway. The animal experiment supported the predictions of network pharmacology. Dachengqi Decoction intervenes sepsis via multiple components, multiple targets, and multiple pathways. The result lays a foundation for further research on the mechanism of Dachengqi Decoction in the treatment of sepsis.
Animals
;
Drugs, Chinese Herbal
;
Gene Ontology
;
Plant Extracts
;
Sepsis/genetics*
4.Research progresses in the biosynthesis of curcuminoids.
Luyao WANG ; Xue HAN ; Fengzhong WANG ; Lichao SUN ; Fengjiao XIN
Chinese Journal of Biotechnology 2021;37(2):404-417
Curcuminoids are rare diketone compounds in plants and can be found in the rhizome of Curcuma longa as well as other Zingiberaceae and Araceae. Curcuminoids have been widely used in food and medical area owing to the yellow colors, as well as the antioxidant and many other pharmacological activities. Curcuminoids are a mixture of compounds containing curcumin, demethoxycurcumin and bisdemethoxycurcumin, which have distinct benzene ring substituents. Currently, curcuminoids are exclusively produced through plant extraction, which do not satisfy the meeting of the market demand. Empowered with new synthetic biology tools and metabolic engineering strategies, there is renewed interest in production of curcuminoids using microorganisms. Heterologous production of curcuminoids has been achieved using Escherichia coli, Yarrowia lipolytica, Pseudomonas putida and Aspergillus oryzae via engineering of curcuminoids biosynthesis pathway. In this review, we first describe the biological activities and various applications of curcuminoids. Next, we summarize the biosynthetic pathway of curcuminoids in Curcuma longa and discuss the catalytic mechanisms of curcumin synthases. Then, we thoroughly explore recent advances in the use of distinct microorganisms for the production of curcuminoids with a special focus on metabolic engineering strategies. Finally, we prospect the microbial production of curcuminoids by highlighting some promising techniques and approaches.
Antioxidants
;
Biosynthetic Pathways/genetics*
;
Curcumin
;
Diarylheptanoids
;
Metabolic Engineering
;
Plant Extracts
5.Aconitum heterophyllum Wall. ex Royle: A critically endangered medicinal herb with rich potential for use in medicine.
Tareq A WANI ; Zahoor A KALOO ; Nisar A DANGROO
Journal of Integrative Medicine 2022;20(2):104-113
Aconitum heterophyllum (Patrees) is a critically endangered medicinal herb of the northwestern Himalayas and has enormous pharmacological potential. It is the only nonpoisonous member of the genus Aconitum, and has been used as a medicinal herb since ancient times. A. heterophyllum is an important ingredient in many traditional systems of medicine. Mostly, it is harvested for its roots, and its medicinal properties are due to the presence of diverse bioactive secondary metabolites, commonly known as aconites. Our understanding of the pharmacological properties of this intriguing genus is continuously growing due to its broad chemical diversity. The therapeutic uses identified by traditional medicinal practice are receiving extensive study. Multiple in vitro experimental investigations of A. heterophyllum have reported the analgesic, anti-inflammatory, antiarrhythmic, antiparasitic and anticancer properties, as well as its effects on the central nervous system. In this review, we highlight the classification, distribution, commerce, traditional uses, phytochemistry, pharmacology and conservation measures relevant to this species. Additionally, this review includes the biosynthetic pathways of A. heterophyllum's key constituents, which could be targeted to enhance the expression levels of desired metabolites via genetic interventions. Studying the genomics, transcriptomics, proteomics and metabolomic aspects of this species would be helpful in developing highly designed genotypes and chemotypes of this species to be used in commercial production.
Aconitum/genetics*
;
Ethnopharmacology
;
Plant Extracts/chemistry*
;
Plant Roots/chemistry*
;
Plants, Medicinal/chemistry*
6.Comparative Genome Analysis of Scutellaria baicalensis and Scutellaria barbata Reveals the Evolution of Active Flavonoid Biosynthesis.
Zhichao XU ; Ranran GAO ; Xiangdong PU ; Rong XU ; Jiyong WANG ; Sihao ZHENG ; Yan ZENG ; Jun CHEN ; Chunnian HE ; Jingyuan SONG
Genomics, Proteomics & Bioinformatics 2020;18(3):230-240
Scutellaria baicalensis (S. baicalensis) and Scutellaria barbata (S. barbata) are common medicinal plants of the Lamiaceae family. Both produce specific flavonoid compounds, including baicalein, scutellarein, norwogonin, and wogonin, as well as their glycosides, which exhibit antioxidant and antitumor activities. Here, we report chromosome-level genome assemblies of S. baicalensis and S. barbata with quantitative chromosomal variation (2n = 18 and 2n = 26, respectively). The divergence of S. baicalensis and S. barbata occurred far earlier than previously reported, and a whole-genome duplication (WGD) event was identified. The insertion of long terminal repeat elements after speciation might be responsible for the observed chromosomal expansion and rearrangement. Comparative genome analysis of the congeneric species revealed the species-specific evolution of chrysin and apigenin biosynthetic genes, such as the S. baicalensis-specific tandem duplication of genes encoding phenylalanine ammonia lyase and chalcone synthase, and the S. barbata-specific duplication of genes encoding 4-CoA ligase. In addition, the paralogous duplication, colinearity, and expression diversity of CYP82D subfamily members revealed the functional divergence of genes encoding flavone hydroxylase between S. baicalensis and S. barbata. Analyzing these Scutellaria genomes reveals the common and species-specific evolution of flavone biosynthetic genes. Thus, these findings would facilitate the development of molecular breeding and studies of biosynthesis and regulation of bioactive compounds.
Evolution, Molecular
;
Flavonoids/biosynthesis*
;
Genome, Plant
;
Plant Extracts/genetics*
;
Scutellaria/metabolism*
;
Whole Genome Sequencing
7.Correlation study between accumulation of triterpenoids and expression of relative genes in Alisma orientale.
Ya-Min ZHANG ; Feng-Ling SUN ; Xue-Hua LU ; Li-Sha LI ; Xiao-Mei XU ; Wen-Jin LIN ; Rong-Qing XU
China Journal of Chinese Materia Medica 2019;44(5):942-947
To research the correlation between accumulation of triterpenoids and expression of key enzymes genes in triterpenoid biosynthesis of Alisma orientale,the study utilized UPLC-MS/MS method to detect eight triterpenoids content in the tuber of A. orientale from different growth stages,including alisol A,alisol A 24 acetate,alisol B,alisol B 23 acetate,alisol C 23 acetate,alisol F,alisol F 24 acetate and alisol G,and then the Real time quantitative PCR was used to analyze the expression of key enzymes genes HMGR and FPPS in triterpenoid biosynthesis. Correlation analysis showed that there was a significant positive relation between the total growth of these eight triterpenoids and the average relative expression of HMGR and FPPS(HMGR: r = 0. 998,P<0. 01; FPPS: r = 0. 957,P<0. 05),respectively. Therefore,the study preliminarily determined that HMGR and FPPS genes could regulate the biosynthesis of triterpenoids in A. orientale,which laid a foundation for further research on the biosynthesis and regulation mechanism of triterpenoids in A. orientale.
Alisma
;
chemistry
;
genetics
;
Chromatography, Liquid
;
Geranyltranstransferase
;
genetics
;
Hydroxymethylglutaryl-CoA-Reductases, NADP-dependent
;
genetics
;
Phytochemicals
;
analysis
;
Plant Extracts
;
Plant Proteins
;
genetics
;
Plant Tubers
;
chemistry
;
Tandem Mass Spectrometry
;
Triterpenes
;
analysis
8.Seedling botanical characters and determination of effective components on Dioscorea zingerbrensis by space mutation.
Baocheng WU ; Yifeng ZHOU ; Yueyu HANG
China Journal of Chinese Materia Medica 2009;34(14):1773-1777
OBJECTIVEIn order to find the new varieties with different horticultural characters, and investigate the mutation effects of seeds of Dioscorea zingerbrensis.
METHODThe seeds were carried by a satellite into space and recovered. The space mutation effect on the germination, seedling growth, chromosomes and rhizome diosgenin content of SP, populations of D. zingerbrensis were investigated.
RESULTStimulated by space environment, the seed possessed the fast germinating characteristics. Germination rate showed no change. It was also found that a few plants were aneuploid or tetraploid. Fresh rhizome weight and rhizome diosgenin content in the second year plant were remarkably higher than those of the control. However, the increasing of third year plant was slow down, and rhizome diosgenin content in the third year plant declined simultaneously.
CONCLUSIONThe space environment showed stimulating effects on seed germination, fresh rhizome weight and rhizome diosgenin content.
Dioscorea ; chemistry ; genetics ; physiology ; Extraterrestrial Environment ; Germination ; Mutation ; Plant Extracts ; chemistry ; Seedlings ; chemistry ; genetics ; physiology
9.Exploration of cross-cultivar group characteristics of a new cultivar of Prunus mume 'Zhizhang Guhong Chongcui'.
Xiaotian QIN ; Mengge GUO ; Shaohua QIN ; Ruidan CHEN
Chinese Journal of Biotechnology 2024;40(1):239-251
'Zhizhang Guhong Chongcui' is a new cultivar of Prunus mume with cross-cultivar group characteristics. It has typical characteristics of cinnabar purple cultivar group and green calyx cultivar group. It has green calyx, white flower, and light purple xylem, but the mechanism remains unclear. In order to clarify the causes of its cross-cultivar group traits, the color phenotype, anthocyanin content and the expression levels of genes related to anthocyanin synthesis pathway of 'Zhizhang Guhong Chongcui', 'Yuxi Zhusha' and 'Yuxi Bian Lü'e' were determined. It was found that the red degree of petals, sepals and fresh xylem in branches was positively correlated with the total anthocyanin content. MYBɑ1, MYB1, and bHLH3 were the key transcription factor genes that affected the redness of the three cultivars of flowers and xylem. The transcription factors further promoted the high expression of structural genes F3'H, DFR, ANS and UFGT, thereby promoting the production of red traits. Combined with phenotype, anthocyanin content and qRT-PCR results, it was speculated that the white color of petals of 'Zhizhang Guhong Chongcui' were derived from the high expression of FLS, F3'5'H, LAR and ANR genes in other branches of cyanidin synthesis pathway, and the low expression of GST gene. The green color of sepals might be originated from the relatively low expression of F3'H, DFR and ANS genes. The red color of xylem might be derived from the high expression of ANS and UFGT genes. This study made a preliminary explanation for the characteristics of the cross-cultivar group of 'Zhizhang Guhong Chongcui', and provided a reference for molecular breeding of flower color and xylem color of Prunus mume.
Animals
;
Anthocyanins
;
DNA Shuffling
;
Flowers/genetics*
;
Porifera
;
Prunus/genetics*
;
Glutamine/analogs & derivatives*
;
Plant Extracts
10.Characteristics of germplasm resources in Coix from xishuangbanna.
Janming PENG ; Weiwei GAO ; Chaozhong PENG ; Chunnian HE ; Qi ZHANG ; Wu BI
China Journal of Chinese Materia Medica 2010;35(4):415-418
OBJECTIVETo evaluate the genetic diversity among wild germplasm resources of Coix that distributed at altitude of 550-1550 m in Xishuangbanna, Yunnan province by comparing the morphological variation, biological and economical factors.
METHODThe field plot experiments were conducted to observation the germination rate, growth period. While the milled rice rate, content of protein, crude fat and ethanol extract of 9 wild Coix germplasm resources were measured.
RESULTThe germination rate of 9 germplasm was from 22% to 81%, and the growth period was among 139-156 d, which belongs to the medium-late mature type. The germination rate, growth stage, plant height, leaf length and width, tiller number, ramification number, seed number per stem of 9 Coix germplasm were significantly different (P < 0.05), respectively. The range of seed total protein contents were from 15.63% 25.74%, crude fat contents were from 5.05%-7.14%, and the contents of alcohol extract, which showed antitumor activity, were from 5.85%-7.27%.
CONCLUSIONThe fact of quite different in plant morphological, biological and quality characters of 9 germplasm suggested that the genetic diversity in the wild populations of Coix distributed throughout the regions of Xishuangbanna is relatively abundant.
China ; Coix ; chemistry ; genetics ; growth & development ; physiology ; Germination ; Plant Extracts ; analysis ; Plant Proteins ; analysis ; Seeds ; chemistry ; genetics ; growth & development ; physiology