1.Detection and sequence analysis of broad bean wilt virus 2 on Rehmannia glutinosa.
Xiao-Long DENG ; Jie YAO ; Lang QIN ; Shi-Wen DING ; Tie-Lin WANG ; Kun ZHANG ; Lei CHENG ; Zhen HE
China Journal of Chinese Materia Medica 2025;50(7):1741-1747
To clarify the occurrence and distribution of broad bean wilt virus 2(BBWV2) on Rehmannia glutinosa, this study collected 87 R. glutinosa samples with typical symptoms of viral disease such as chlorosis and crumple from Wenxian county and Wuzhi county in Jiaozuo city, Henan province and Qiaocheng district in Bozhou city, Anhui province. The BBWV2 CP target band was amplified from 37 R. glutinosa samples by RT-PCR technology. The total detection rate reached 42.5%, among which 43.0% was detected in samples from Henan province. The detection rate in samples from Anhui province was 37.5%. 37 BBWV2 CP sequences were obtained by cloning and sequencing of BBWV2 positive samples(data has been submitted to GenBank, accession numbers: PP407959-PP407995), and the sequence analysis of these CP sequences with 91 other BBWV2 isolates in GenBank showed a high genetic diversity with a consistency rate of 70.8%-100%. Meanwhile, phylogenetic analysis showed that BBWV2 could be divided into three groups according to CP sequences, among which the BBWV2 in R. glutinosa isolates obtained in this study were all located in group 3. This study identified the differences in the occurrence, distribution, and genetic diversity of BBWV2 in R. glutinosa from Henan province and Anhui province and provided a theoretical basis for the prevention and control of BBWV2.
Rehmannia/virology*
;
Phylogeny
;
Plant Diseases/virology*
;
China
;
Molecular Sequence Data
;
Fabavirus/classification*
2.Partial knockout of NtPDK1a/1b/1c/1d enhances the disease resistance of Nicotiana tabacum.
Qianwei REN ; Hujiao LAN ; Tianyao LIU ; Huanting ZHAO ; Yating ZHAO ; Rui ZHANG ; Jianzhong LIU
Chinese Journal of Biotechnology 2025;41(2):670-679
The protein kinase A/protein kinase G/protein kinase C-family (AGC kinase family) of eukaryotes is involved in regulating numerous biological processes. The 3-phosphoinositide- dependent protein kinase 1 (PDK1), is a conserved serine/threonine kinase in eukaryotes. To understand the roles of PDK1 homologous genes in cell death and immunity in tetraploid Nicotiana tabacum, the previuosly generated transgenic CRISPR/Cas9 lines, in which 5-7 alleles of the 4 homologous PDK1 genes (NtPDK1a/1b/1c/1d homologs) simultaneously knocked out, were used in this study. Our results showed that the hypersensitive response (HR) triggered by transient overexpression of active Pto (PtoY207D) or soybean GmMEKK1 was significantly delayed, whereas the resistance to Pseudomonas syrangae pv. tomato DC3000 (Pst DC3000) and tobacco mosaic virus (TMV) was significantly elevated in these partial knockout lines. The elevated resistance to Pst DC3000 and TMV was correlated with the elevated activation of NtMPK6, NtMPK3, and NtMPK4. Taken together, our results indicated that NtPDK1s play a positive role in cell death but a positive role in disease resistance, likely through negative regulation of the MAPK signaling cascade.
Nicotiana/virology*
;
Disease Resistance/genetics*
;
Plant Diseases/immunology*
;
Plants, Genetically Modified/genetics*
;
Gene Knockout Techniques
;
Plant Proteins/genetics*
;
CRISPR-Cas Systems
;
Protein Serine-Threonine Kinases/genetics*
;
3-Phosphoinositide-Dependent Protein Kinases/genetics*
;
Pyruvate Dehydrogenase Acetyl-Transferring Kinase
;
Tobacco Mosaic Virus/pathogenicity*
3.N-terminal domain of Rep encoded by beet severe curly top virus mediates suppression of RNA silencing and induces VIM5 expression.
Jingyu XU ; Jianxin LU ; Zhenyu YU ; Meijie HU ; Chengkai GUO ; Zhongqi QIU ; Zhongqi CHEN
Chinese Journal of Biotechnology 2025;41(10):3956-3968
Geminiviruses cause substantial crop yield losses worldwide. The replication initiator protein (Rep) encoded by geminiviruses is indispensable for geminiviral replication. The Rep protein encoded by beet severe curly top virus (BSCTV, genus Curtovirus, family Geminiviridae) induces VARIANT IN METHYLATION 5 (VIM5) expression in Arabidopsis leaves upon BSCTV infection. VIM5 functions as a ubiquitination-related E3 ligase to promote the proteasomal degradation of methyltransferases, resulting in reduction of methylation levels in the BSCTV C2-3 promoter. However, the specific domains of Rep responsible for VIM5 induction remain poorly characterized. Although Rep proteins from several geminiviruses act as viral suppressors of RNA silencing (VSRs), whether BSCTV Rep also possesses VSR activity remains to be illustrated. In this study, we employed a transient expression system in the 16c-GFP transgenic and the wild-type Nicotiana benthamiana plants to analyze the VSR and the VIM5-inducing activities of different truncated Rep proteins haboring distinct domains. We found that the N-terminal domain (amino acids 1-180) of Rep suppressed GFP silencing in 16c-GFP transgenic N. benthamiana leaves. The minimal N-terminal fragment (amino acids 1-104) induced VIM5 expression upon co-infiltration, while C-terminal truncations lacked VIM5-inducing activity. Our results indicate that the N-terminal domain of Rep encoded by BSCTV mediates the suppression of RNA silencing and induces VIM5 expression. Thus, our findings contribute to a better understanding of interactions between geminiviral Rep and plant hosts.
Geminiviridae/genetics*
;
Nicotiana/metabolism*
;
Arabidopsis/metabolism*
;
RNA Interference
;
Viral Proteins/metabolism*
;
Arabidopsis Proteins/metabolism*
;
Plants, Genetically Modified/metabolism*
;
Protein Domains
;
Plant Diseases/virology*
;
Methyltransferases/metabolism*
;
Ubiquitin-Protein Ligases/metabolism*
;
DNA Helicases/genetics*
4.Construction and characterization of an infectious clone of Soybean mosaic virus isolate from Pinellia ternata.
Li ZHANG ; Defu WANG ; Yanni PEI ; Shen XIAN ; Yanbing NIU
Chinese Journal of Biotechnology 2020;36(5):949-958
Soybean mosaic virus (SMV), one of the major viral diseases of Pinellia ternata (Thunb.) Breit., has had a serious impact on its yield and quality. The construction of viral infectious clones is a powerful tool for reverse genetics research on viral gene function and interaction between virus and host. To clarify the molecular mechanism of SMV infection in Pinellia ternata, it is particularly important to construct the SMV full-length cDNA infectious clone. Therefore, the infectious clone of Soybean mosaic virus Shanxi Pinellia ternata isolate (SMV-SXBX) was constructed in this study by Gibson in vitro recombination system, and the healthy Pinellia ternata leaves were inoculated by Agrobacterium infiltration, further through mechanical passage and RT-PCR, confirming that the 3' end of the SMV-SXBX infectious clone had a stable infectivity when it contained 56-nt of poly(A) tail. This method is not only convenient and efficient, but also avoids the instability of SMV infectious clones in Escherichia coli. The construction of SMV full-length infectious cDNA clones laid the foundation for further study on the molecular mechanism of SMV replication and pathogenesis.
DNA, Complementary
;
Pinellia
;
virology
;
Plant Diseases
;
virology
;
Potyvirus
;
isolation & purification
;
metabolism
5.Highly sensitive serological approaches for Pepino mosaic virus detection.
Wan-Qin HE ; Jia-Yu WU ; Yi-Yi REN ; Xue-Ping ZHOU ; Song-Bai ZHANG ; Ya-Juan QIAN ; Fang-Fang LI ; Jian-Xiang WU
Journal of Zhejiang University. Science. B 2020;21(10):811-822
Pepino mosaic virus (PepMV) causes severe disease in tomato and other Solanaceous crops around globe. To effectively study and manage this viral disease, researchers need new, sensitive, and high-throughput approaches for viral detection. In this study, we purified PepMV particles from the infected Nicotiana benthamiana plants and used virions to immunize BALB/c mice to prepare hybridomas secreting anti-PepMV monoclonal antibodies (mAbs). A panel of highly specific and sensitive murine mAbs (15B2, 8H6, 23D11, 20D9, 3A6, and 8E3) could be produced through cell fusion, antibody selection, and cell cloning. Using the mAbs as the detection antibodies, we established double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA), Dot-ELISA, and Tissue print-ELISA for detecting PepMV infection in tomato plants. Resulting data on sensitivity analysis assays showed that both DAS-ELISA and Dot-ELISA can efficiently monitor the virus in PepMV-infected tissue crude extracts when diluted at 1:1 310 720 and 1:20 480 (weight/volume ratio (w/v), g/mL), respectively. Among the three methods developed, the Tissue print-ELISA was found to be the most practical detection technique. Survey results from field samples by the established serological approaches were verified by reverse transcription polymerase chain reaction (RT-PCR) and DNA sequencing, demonstrating all three serological methods are reliable and effective for monitoring PepMV. Anti-PepMV mAbs and the newly developed DAS-ELISA, Dot-ELISA, and Tissue print-ELISA can benefit PepMV detection and field epidemiological study, and management of this viral disease, which is already widespread in tomato plants in Yunnan Province of China.
Animals
;
Antibodies, Monoclonal/immunology*
;
China
;
Cloning, Molecular
;
Enzyme-Linked Immunosorbent Assay/methods*
;
Female
;
Hybridomas
;
Solanum lycopersicum/virology*
;
Mice
;
Mice, Inbred BALB C
;
Plant Diseases/virology*
;
Potexvirus/metabolism*
;
Sensitivity and Specificity
;
Nicotiana
6.Development of a colloidal gold-based immunochromatographic strip for rapid detection of Rice stripe virus.
De-Qing HUANG ; Rui CHEN ; Ya-Qin WANG ; Jian HONG ; Xue-Ping ZHOU ; Jian-Xiang WU
Journal of Zhejiang University. Science. B 2019;20(4):343-354
Rice stripe virus (RSV) causes dramatic losses in rice production worldwide. In this study, two monoclonal antibodies (MAbs) 16E6 and 11C1 against RSV and a colloidal gold-based immunochromatographic strip were developed for specific, sensitive, and rapid detection of RSV in rice plant and planthopper samples. The MAb 16E6 was conjugated with colloidal gold and the MAb 11C1 was coated on the test line of the nitrocellulose membrane of the test strip. The specificity of the test strip was confirmed by a positive reaction to RSV-infected rice plants and small brown planthopper (SBPH), and negative reactions to five other rice viruses, healthy rice plants, four other vectors of five rice viruses, and non-viruliferous SBPH. Sensitivity analyses showed that the test strip could detect the virus in RSV-infected rice plant tissue crude extracts diluted to 1:20 480 (w/v, g/mL), and in individual viruliferous SBPH homogenate diluted to 1:2560 (individual SPBH/μL). The validity of the developed strip was further confirmed by tests using field-collected rice and SBPH samples. This newly developed test strip is a low-cost, fast, and easy-to-use tool for on-site detection of RSV infection during field epidemiological studies and paddy field surveys, and thus can benefit decision-making for RSV management in the field.
Antibodies, Monoclonal/chemistry*
;
China
;
Chromatography, Affinity/methods*
;
Collodion/chemistry*
;
Colloids/chemistry*
;
Gold Colloid/chemistry*
;
Materials Testing
;
Membranes, Artificial
;
Oryza/virology*
;
Plant Diseases/virology*
;
Reproducibility of Results
;
Sensitivity and Specificity
;
Species Specificity
;
Tenuivirus/isolation & purification*
7.A novel endogenous badnavirus exists in Alhagi sparsifolia.
Yong-Chao LI ; Jian-Guo SHEN ; Guo-Huan ZHAO ; Qin YAO ; Wei-Min LI
Journal of Zhejiang University. Science. B 2018;19(4):274-284
We report the recovery of a 7068-nt viral sequence from the "viral fossils" embedded in the genome of Alhagi sparsifolia, a typical desert plant. Although the full viral genome remains to be completed, the putative genome structure, the deduced amino acids and phylogenetic analysis unambiguously demonstrate that this viral sequence represents a novel species of the genus Badnavirus. The putative virus is tentatively termed Alhagi bacilliform virus (ABV). Southern blotting and inverse polymerase chain reaction (PCR) data indicate that the ABV-related sequence is integrated into the A. sparsifolia genome, and probably does not give rise to functional episomal virus. Molecular evidence that the ABV sequence exists widely in A. sparsifolia is also presented. To our knowledge, this is the first endogenous badnavirus identified from plants in the Gobi desert, and may provide new clues on the evolution, geographical distribution as well as the host range of the badnaviruses.
Badnavirus/genetics*
;
Biological Evolution
;
Desert Climate
;
Fabaceae/virology*
;
Genes, Plant
;
Genetic Variation
;
Genome, Viral
;
Geography
;
Open Reading Frames
;
Phylogeny
;
Plant Diseases/virology*
;
Plasmids
;
Sequence Analysis, RNA
8.Advances in genetic engineering of plant virus resistance.
Yakupjan HAXIM ; Asigul ISMAYIL ; Yunjing WANG ; Yule LIU
Chinese Journal of Biotechnology 2015;31(6):976-994
Plant virus is one of the most economical devastating microorganisms for global agriculture. Although several strategies are useful for controlling viral infection, such as resistant breeds cultivation, chemical bactericides treatment, blocking the infection source, tissue detoxification and field sanitation, viral disease is still a problem in agricultural production. Genetic engineering approach offers various options for introducing virus resistance into crop plants. This paper reviews the current strategies of developing virus resistant transgenic plants.
Agriculture
;
Crops, Agricultural
;
genetics
;
virology
;
Genetic Engineering
;
Plant Diseases
;
prevention & control
;
virology
;
Plant Viruses
;
Plants, Genetically Modified
;
virology
9.Identification of Host Factors Interacting with the Movement Protein of Apple Chlorotic Leaf Spot Virus by Yeast Two-Hybrid System.
Yikun HE ; Min ZHONG ; Yu ZHANG ; Yanan WANG ; Keqiang CAO
Chinese Journal of Virology 2015;31(2):124-131
In order to identify host factors which interact with the movement protein (MP) of Apple chlorotic leaf spot virus (ACLSV), ACLSV MP was cloned into the bait vector pGBKT7 and used to screen a cDNA library of Malus sylvestris cv. R12740-7A, which had previously been constructed by yeast two-hybrid sequencing transformation. The protein functions of the identified host factors were determined according to their gene annotations in GenBank. The result showed that the bait plasmid pGBKT7-MP showed no virulence or self-activating effect on yeast strain Y2H Gold. Sixty-nine interactor proteins were identified, which were divided into the following 10 classes according to their described functions: hydrolases; pathogenesis-related proteins; DNA binding proteins; phosphatases; ligases; proteins with catalytic activity; phenylalanine ammonialyases; peroxidases; NAD binding proteins; and proteins of unknown function. Bioinformatic analysis of gene homology suggested that phosphatases, pathogenesis-related proteins and glyceraldehyde-3-phosphate dehydrogenase A may play an important role in the interaction between virus and host. This study may provide a theoretical basis for the further study of viral pathogenesis and virus-host interaction mechanisms.
Flexiviridae
;
genetics
;
metabolism
;
Malus
;
genetics
;
metabolism
;
virology
;
Molecular Sequence Data
;
Plant Diseases
;
genetics
;
virology
;
Plant Proteins
;
genetics
;
metabolism
;
Plant Viral Movement Proteins
;
genetics
;
metabolism
;
Protein Binding
;
Two-Hybrid System Techniques
10.Molecular identification and sequence analysis of broad bean wilt virus 2 isolates from atractylodes macrocephala Koidz.
Yanbing NIU ; Xiaoli SHI ; Ximei ZHANG ; Huiqi ZHAO ; Baojia ZHAO
Chinese Journal of Virology 2015;31(1):58-64
To identity the pathogen that causes the mosaic and yellowing symptoms on Atractylodes macrocephala Koidz in Jiangxian, Shanxi province, biological inoculation, sequence-independent amplification (SIA),RT-PCR and other identification methods were used. The results showed that the chlorotic and necrosis symptoms occurred in the indicator plant Chenopodium quinoa after it was infected with the pathogen,and the same symptoms appeared after the reinoculation of healthy Atractylodes macrocephala Koidz; this reflected that the disease was likely to be caused by a virus. The results of SIA and sequencing showed that Broad bean wilt virus 2 (BBWV2) was present in severely mosaic Atractylodes macrocephala Koidz leaves. To further characterize the BBWV2 isolate from Atractylodes macrocephala (BBWV2-Am), the polyprotein partial gene encoded by BBWV2-Am RNA2 was cloned and sequenced. Sequence alignments showed that the nucleotide sequence identity of BBWV2-Am SCP and LCP genes ranged from 79.3% to 87.2% and from 80.1% to 89.2% compared to other BBWV2 strains,respectively; the deduced amino acid sequence similarities of the two gene products ranged from 91.2% to 95.7% and from 89.44 to 95.5%, respectively,compared to those of other BBWV2 strains. Phylogenetic comparisons showed that BBWV2-Am was most likely to be related to BBWV2-Rg,but formed an independent branch. This is the first report of BBWV2 in Atractylodes macrocephala Koidz.
Amino Acid Sequence
;
Atractylodes
;
virology
;
Fabavirus
;
chemistry
;
classification
;
genetics
;
isolation & purification
;
Molecular Sequence Data
;
Phylogeny
;
Plant Diseases
;
virology
;
Sequence Analysis
;
Viral Proteins
;
chemistry
;
genetics

Result Analysis
Print
Save
E-mail