1.Extracellular matrix of the human retinal pigment epithelial cells in vitro.
Korean Journal of Ophthalmology 1988;2(2):66-68
This study was undertaken to localize fibronectin and type IV collagen in the cultured retinal pigment epithelial cell by means of immunofluorescent staining and immunocytochemical methods. Immunofluorescent staining and immunocytochemical methods revealed fibronectin and type IV collagen localized on the extracellular membrane of the cultured retinal pigment epithelial cell. Ultrastructural immunocytochemical technique also revealed fibronectin associated with extracellular tissue. This study demonstrated that fibronectin and type IV collagen are an integral component of the extracellular matrix of the human retinal pigment epithelial cell in vitro.
Cells, Cultured
;
Collagen/*analysis
;
Extracellular Matrix/*analysis/immunology
;
Fibronectins/*analysis
;
Fluorescent Antibody Technique
;
Humans
;
Immunohistochemistry
;
Pigment Epithelium of Eye/*analysis
2.TGF-betas Synthesized by RPE Cells Have Autocrine Activity on Mesenchymal Transformation and Cell Proliferation.
Sung Chul LEE ; Soon Hyun KIM ; Hyoung Jun KOH ; Oh Woong KWON
Yonsei Medical Journal 2001;42(3):271-277
The present study investigated the effects of transforming growth factor (TGF)-beta on retinal pigment epithelial (RPE) transformation in a simplified model and also whether or not TGF-beta exhibits similar proliferation effects on transformed RPE cells that it has on primary RPE cells. Furthermore, we examined the cell proliferation effects of RPE-conditioned medium (CM). A vertical wound measuring 2 mm in diameter was made on primary RPE monolayers. The expression of alpha- smooth muscle actin (SMA) by the cells located at the wound edges was observed using a confocal microscope under immunofluorescent staining. Cell proliferation was measured by incorporating 3H-thymidine into DNA. The presence of alpha- SMA was observed in the cells within the wound after treatment with TGF-beta2, while negative expression was observed in control cells. TGF-betas inhibited the proliferation of the primary cultures of RPE cells in a dose-dependent manner, but the spindle-shaped late-passaged RPE cells were not inhibited by these growth factors. The medium conditioned by RPE cells stimulated the proliferation of subconjunctival fibroblasts and inhibited the proliferation of primary RPE cells, in a manner similar to TGF-beta. These findings demonstrate that TGF-beta-stimulated RPE cells may evoke proliferative vitreoretinopathy through mesenchymal transformation and cell proliferation.
Actins/analysis
;
Animal
;
Cell Division/drug effects
;
Cells, Cultured
;
Culture Media, Conditioned
;
DNA/biosynthesis
;
Mesoderm/*cytology
;
Pigment Epithelium of Eye/*cytology
;
Rabbits
;
Swine
;
Transforming Growth Factor beta/*physiology
;
Vitreoretinopathy, Proliferative/etiology
3.The microarray study on the stress gene transcription profile in human retina pigment epithelial cells exposed to microwave radiation.
Xiuhong LIU ; Hong SHEN ; Yongliang SHI ; Jingyuan CHEN ; Yaoming CHEN ; Ailing JI
Chinese Journal of Preventive Medicine 2002;36(5):291-294
OBJECTIVETo study the difference in stress and apoptosis related genes transcription between hTERT-RPE1 cells exposed to simulated microwave radiation and the cells with heat water bath, and the effects of microwave on gene transcription in cultured human retina pigment epithelial cells.
METHODScDNA microarray technique was used to detect the mRNA isolated from hTERT-RPE1 cells exposed to 2 450 MHz simulated microwave radiation and with heat water bath, respectively.
RESULTSAmong the 97 related aim genes, there were seven genes up-regulating its transcription, i.e., M31166 (2.52fold), L24123 (2.66fold), AF039704 (2.22fold), U67156 (2.07fold), AF040958 (2.13fold), NM-001423 (2.63fold) and NM-005346 (3.68fold). But, no notably down-regulating gene in transcription was detected.
CONCLUSIONSMicrowave could induce up-regulating in multiple stress and apoptosis related genes transcription in cultured human retina pigment epithelial cells, hTERT-RPE1 cells. Microwave radiation has unique effect itself in addition to its heat effect.
Gene Expression Profiling ; Gene Expression Regulation ; radiation effects ; Humans ; Microwaves ; Oligonucleotide Array Sequence Analysis ; methods ; Pigment Epithelium of Eye ; cytology ; metabolism ; radiation effects ; Retina ; cytology ; metabolism ; radiation effects ; Time Factors