1.Advances in using adaptive laboratory evolution technology for engineering of photosynthetic cyanobacteria.
Jiawei GAO ; Xiaofei ZHU ; Tao SUN ; Lei CHEN ; Weiwen ZHANG
Chinese Journal of Biotechnology 2023;39(8):3075-3094
Cyanobacteria are the only prokaryotes capable of oxygenic photosynthesis, which have potential to serve as "autotrophic cell factories". However, the synthesis of biofuels and chemicals using cyanobacteria as chassis are suffered from poor stress tolerance and low yield, resulting in low economic feasibility for industrial production. Thus, it's urgent to construct new cyanobacterial chassis by means of synthetic biology. In recent years, adaptive laboratory evolution (ALE) has made great achievements in chassis engineering, including optimizing growth rate, increasing tolerance, enhancing substrate utilization and increasing product yield. ALE has also made some progress in improving the tolerance of cyanobacteria to high light intensity, heavy metal ions, high concentrations of salt and organic solvents. However, the engineering efficiency of ALE strategy in cyanobacteria is generally low, and the molecular mechanisms underpinning the tolerance to various stresses have not been fully elucidated. To this end, this review summarizes the ALE-associated technical strategies and their applications in cyanobacteria chassis engineering, following by discussing how to construct larger ALE mutation library, increase mutation frequency of strains and shorten evolution time. Moreover, exploration of the construction principles and strategies for constructing multi-stress tolerant cyanobacteria, and efficient analysis the mutant libraries of evolved strains as well as construction of strains with high yield and strong robustness are discussed, with the aim to facilitate the engineering of cyanobacteria chassis and the application of engineered cyanobacteria in the future.
Technology
;
Photosynthesis/genetics*
;
Cyanobacteria/genetics*
;
Light
;
Biofuels
2.Physiological and transcriptional responses to heat stress in a typical phenotype of Pinellia ternata.
Jialu WANG ; Jialei CHEN ; Xiangyu ZHANG ; Xue FENG ; Xiwen LI
Chinese Journal of Natural Medicines (English Ed.) 2023;21(4):243-252
Pinellia ternata is an important medicinal plant, and its growth and development are easily threatened by high temperature. In this study, comprehensive research on physiological, cytological and transcriptional responses to different levels of heat stress were conducted on a typical phenotype of P. ternata. First, P. ternata exhibited tolerance to the increased temperature, which was supported by normal growing leaves, as well as decreased and sustained photosynthetic parameters. Severe stress aggravated the damages, and P. ternata displayed an obvious leaf senescence phenotype, with significantly increased SOD and POD activities (46% and 213%). In addition, mesophyll cells were seriously damaged, chloroplast thylakoid was fuzzy, grana lamellae and stroma lamellae were obviously broken, and grana thylakoids were stacked, resulting in a dramatically declined photosynthetic rate (74.6%). Moreover, a total of 16 808 genes were significantly differential expressed during this process, most of which were involved in photosynthesis, transmembrane transporter activity and plastid metabolism. The number of differentially expressed transcription factors in MYB and bHLH families was the largest, indicating that these genes might participate in heat stress response in P. ternata. These findings provide insight into the response to high temperature and facilitate the standardized cultivation of P. ternata.
Pinellia/genetics*
;
Heat-Shock Response/genetics*
;
Photosynthesis/genetics*
;
Plants, Medicinal/genetics*
;
Phenotype
3.Investigating the impact of silencing an RNA-binding protein gene SlRBP1 on tomato photosynthesis through RNA-sequencing analysis.
Xiwen ZHOU ; Liqun MA ; Hongliang ZHU
Chinese Journal of Biotechnology 2024;40(1):150-162
Photosynthesis in plants directly affects the synthesis and accumulation of organic matter, which directly influences crop yield. RNA-binding proteins (RBPs) are involved in the regulation of a variety of physiological functions in plants, while the functions of RBPs in photosynthesis have not been clearly elucidated. To investigate the effect of a glycine-rich RNA-binding protein (SlRBP1) in tomato on plant photosynthesis, a stably inherited SlRBP1 silenced plant in Alisa Craig was obtained by plant tissue culture using artificial small RNA interference. It turns out that the size of the tomato fruit was reduced and leaves significantly turned yellow. Chlorophyll(Chl) content measurement, Chl fluorescence imaging and chloroplast transmission electron microscopy revealed that the chloroplast morphology and structure of the leaves of tomato amiR-SlRBP1 silenced plants were disrupted, and the chlorophyll content was significantly reduced. Measurement of photosynthesis rate of wild-type and amiR-SlRBP1 silenced plants in the same period demonstrated that the photosynthetic rate of these plants was significantly reduced, and analysis of RNA-seq data indicated that silencing of SlRBP1 significantly reduced the expression of photosynthesis-related genes, such as PsaE, PsaL, and PsbY, and affected the yield of tomato fruits through photosynthesis.
RNA
;
Solanum lycopersicum/genetics*
;
Photosynthesis/genetics*
;
Chlorophyll
;
RNA-Binding Proteins/genetics*
4.Biological function and molecular mechanism of the transcription factor GLKs in plants: a review.
Shurong SHEN ; Junjie YUAN ; Yiling XU ; Bojun MA ; Xifeng CHEN
Chinese Journal of Biotechnology 2022;38(8):2700-2712
GLKs (GOLDEN 2-LIKEs) are a group of plant-specific transcription factors regulating the chloroplast biogenesis, differentiation and function maintains by triggering the expression of the photosynthesis-associated nuclear genes (PhANGs). The GLKs also play important roles in nutrient's accumulation in fruits, leaf senescence, immunity and abiotic stress response. The expression of GLK genes were affected by multiple hormones or environmental factors. Therefore, GLKs were considered as the key nodes of regulatory network in plant cells, and potential candidates to improve the photosynthetic capacity of crops. Since numerous researches of GLKs have been reported in plants, the biological function, molecular mechanism of GLKs genes and its applications in breeding were summarized and a GLK-mediated signaling network model was developed. This review may facilitate future research and application of GLKs.
Chloroplasts/genetics*
;
Gene Expression Regulation, Plant
;
Photosynthesis/genetics*
;
Plant Breeding
;
Transcription Factors/metabolism*
5.Characterization the response of Chlamydomonas reinhardtii serine/threonine protein kinase mutant to blue light.
Wangning LI ; Mengjing LIANG ; Ze YANG ; Yanan LI ; Chunhui ZHANG ; Chunli JI ; Runzhi LI ; Song QIN ; Jinai XUE ; Hongli CUI
Chinese Journal of Biotechnology 2023;39(11):4563-4579
In order to investigate the molecular mechanism of silk/threonine protein kinase (STK)-mediated blue light response in the algal Chlamydomonas reinhardtii, phenotype identification and transcriptome analysis were conducted for C. reinhardtii STK mutant strain crstk11 (with an AphvIII box reverse insertion in stk11 gene coding region) under blue light stress. Phenotypic examination showed that under normal light (white light), there was a slight difference in growth and pigment contents between the wild-type strain CC5325 and the mutant strain crstk11. Blue light inhibited the growth and chlorophyll synthesis in crstk11 cells, but significantly promoted the accumulation of carotenoids in crstk11. Transcriptome analysis showed that 860 differential expression genes (DEG) (559 up-regulated and 301 down-regulated) were detected in mutant (STK4) vs. wild type (WT4) upon treatment under high intensity blue light for 4 days. After being treated under high intensity blue light for 8 days, a total of 1 088 DEGs (468 upregulated and 620 downregulated) were obtained in STK8 vs. WT8. KEGG enrichment analysis revealed that compared to CC5325, the crstk11 blue light responsive genes were mainly involved in catalytic activity of intracellular photosynthesis, carbon metabolism, and pigment synthesis. Among them, upregulated genes included psaA, psaB, and psaC, psbA, psbB, psbC, psbD, psbH, and L, petA, petB, and petD, as well as genes encoding ATP synthase α, β and c subunits. Downregulated genes included petF and petJ. The present study uncovered that the protein kinase CrSTK11 of C. reinhardtii may participate in the blue light response of algal cells by mediating photosynthesis as well as pigment and carbon metabolism, providing new knowledge for in-depth analysis of the mechanism of light stress resistance in the algae.
Chlamydomonas reinhardtii/genetics*
;
Photosynthesis/genetics*
;
Plants/metabolism*
;
Protein Kinases
;
Threonine/metabolism*
;
Carbon/metabolism*
;
Serine/metabolism*
6.Transcriptional analysis of grape in response to weak light stress.
Tianchi CHEN ; Tao XU ; Xuefu LI ; Leyi SHEN ; Lingling HU ; Yanfei GUO ; Yonghong JIA ; Yueyan WU
Chinese Journal of Biotechnology 2022;38(10):3859-3877
Grape (Vitis vinifera L.) in production is frequently exposed to inadequate light, which significantly affects its agronomic traits via inhibiting their physiological, metabolic and developmental processes. To explore the mechanism how the grape plants respond to the weak light stress, we used 'Yinhong' grape and examined their physiology-biochemistry characteristics and transcriptional profile under different levels of weak light stress. The results showed that grape seedlings upon low intensity shading treatments were not significantly affected. As the shading stress intensity was strengthened, the epidermis cells, palisade tissue, and spongy tissue in the leaves were thinner, the intercellular space between the palisade tissue and spongy tissue was larger compared with that of the control, and the activities of superoxide dismutase, catalase and peroxidase were decreased gradually. Additionally, the soluble protein content increased and the free proline content decreased gradually. Compared with the control, significant changes in plant photosynthetic characteristics and physiology-biochemistry characteristics were observed under high intensity of shading (80%). RNA-seq data showed that the differentially expressed genes between CK and T2, CK and T4, T2 and T4 were 13 913, 13 293 and 14 943, respectively. Most of the enrichment pathways were closely related with the plant's response to stress. Several signaling pathways in response to stress-resistance, e.g. JA/MYC2 pathway and MAPK signal pathway, were activated under weak light stress. The expression level of a variety of genes related to antioxidation (such as polyphenol oxidase and thioredoxin), photosynthesis (such as phytochrome) was altered under weak light stress, indicating that 'Yinhong' grape may activate the antioxidation related pathways to cope with reactive oxygen species (ROS). In addition, it may activate the expression of photosynthetic pigment and light reaction structural protein to maintain the photosynthesis activity. This research may help better understand the relevant physiological response mechanism and facilitate cultivation of grape seedlings under weak light.
Vitis/metabolism*
;
Gene Expression Regulation, Plant
;
Photosynthesis/genetics*
;
Plant Leaves
;
Light
;
Seedlings/metabolism*
7.Engineering photosynthetic cyanobacterial chassis: a review.
Qin WU ; Lei CHEN ; Jiangxin WANG ; Weiwen ZHANG
Chinese Journal of Biotechnology 2013;29(8):1086-1099
Photosynthetic cyanobacteria possess a series of good properties, such as their abilities to capture solar energy for CO2 fixation, low nutritional requirements for growth, high growth rate, and relatively simple genetic background. Due to the high oil price and increased concern of the global warming in recent years, cyanobacteria have attracted widespread attention because they can serve as an 'autotrophic microbial factory' for producing renewable biofuels and fine chemicals directly from CO2. Particularly, significant progress has been made in applying synthetic biology techniques and strategies to construct and optimize cyanobacteria chassis. In this article, we critically summarized recent advances in developing new methods to optimize cyanobacteria chassis, improving cyanobacteria photosynthetic efficiency, and in constructing cyanobacteria chassis tolerant to products or environmental stresses. In addition, various industrial applications of cyanobacteria chassis are also discussed.
Biofuels
;
Cyanobacteria
;
genetics
;
physiology
;
Genetic Engineering
;
methods
;
Photosynthesis
;
Synthetic Biology
;
methods
8.Production of lactate from carbon fixation by cyanobacteria: development and prospect.
Jianxun XIAO ; Pier-Luc TREMBLAY ; Tian ZHANG
Chinese Journal of Biotechnology 2021;37(4):1229-1236
Lactate is an important industrial chemical and widely used in various industries. In recent years, with the increasing demand for polylactic acid (PLA), the demand for lactate raw materials is also increasing. The contradiction between the high cost and the market demand caused by the heterotrophic production of lactate attracts researchers to seek other favorable solutions. The production of lactate from photosynthetic carbon fixation by cyanobacteria is a potential new raw material supply strategy. Based on the photosynthetic autotrophic cell factory, it can directly produce high optical purity lactate from carbon dioxide on a single platform driven by solar energy. The raw materials are cheap and easy to obtain, the process is simple and controllable, the products are clear and easy to separate, and the double effects of energy saving and emission reduction and production of high value-added products are achieved at the same time, which has important research and application value. This paper reviews the development history of cyanobacteria carbon sequestration to produce lactate, summarizes its research progress and encounters technical difficulties from the aspects of metabolic basis, metabolic engineering strategy, metabolic kinetics analysis and technical application, and prospects the future of this technology.
Carbon Cycle
;
Carbon Dioxide
;
Cyanobacteria/genetics*
;
Lactic Acid
;
Metabolic Engineering
;
Photosynthesis
9.Characterization of high-yield performance as affected by genotype and environment in rice.
Song CHEN ; Fang-rong ZENG ; Zong-zhi PAO ; Guo-ping ZHANG
Journal of Zhejiang University. Science. B 2008;9(5):363-370
We characterized yield-relevant characters and their variations over genotypes and environments (locations and years) by examining two rice varieties (9746 and Jinfeng) with high yield potential. 9746 and Jinfeng were planted in two locations of Shanghai, China, during 2005 and 2006. The results show that there was a large variation in grain yield between locations and years. The realization of high yield potential for the two types of rice was closely related to the improved sink size, such as more panicles per square meter or grains per panicle. Stem and leaf biomasses were mainly accumulated from tillering stage to heading stage, and showed slow decline during grain filling. Meanwhile, some photosynthetic characters including net photosynthesis rate (Pn), leaf area index (LAI), specific leaf area (SLA), fluorescence parameter (maximum quantum yield of PSII, Fv/Fm), chlorophyll content (expressed as SPAD value), as well as nutrient (N, P, K) uptake were also measured to determine their variations over genotypes and environments and their relationships with grain yield. Although there were significant differences between years or locations for most measurements, SLA at tillering and heading stages, Fv/Fm and LAI at heading stage, stem biomass at heading and maturity stages, and leaf nitrogen concentration at tillering and heading stages remained little changed, indicating their possible applications as selectable characters in breeding programs. It was also found that stem nitrogen accumulation at tillering stage is one of the most important and stable traits for high yield formation.
Biomass
;
Environment
;
Genotype
;
Nitrogen
;
metabolism
;
Oryza
;
genetics
;
growth & development
;
Phosphorus
;
metabolism
;
Photosynthesis
;
Plant Leaves
;
metabolism
;
Potassium
;
metabolism
10.Isolation and physiological characteristics of a premature senescence mutant in rice (Oryza sativa L.).
Fu-zhen LI ; Song-heng JIN ; Guo-cheng HU ; Ya-ping FU ; Hua-min SI ; De-an JIANG ; Zong-xiu SUN
Journal of Zhejiang University. Science. B 2005;6(8):803-811
A rice pse(t) (premature senescence, tentatively) mutant line, was isolated from 4,500 independent T-DNA inserted transgenic lines. The symptoms of premature senescence appeared more severely than those of the control plants (Zhonghua 11, japonica) at the last development stage. To characterize the mutant and provide basic information on the candidate genes by mapping to a physical region of 220-kb, experiments were carried out in two phytotrons under controlled temperature of 24 degrees C and 28 degrees C, respectively. The content of chlorophyll, soluble protein and MDA (malondialdehyde), net photosynthesis, the antioxidant enzyme activities of SOD (superoxide dismuase) (EC 1.15.1.1) and POD (peroxidase) (EC 1.11.1.7) and the peptidase activities of leaves were measured from top to bottom according to the leaf positions at the flowering stage. Compared with the control plant, the mutant showed the following characteristics: (1) Higher net photosynthesis rate (P(n)) appeared in the 1st and 2nd leaves, contents of chlorophyll and soluble protein were also higher in the 1st leaf; (2) The activities of SOD, POD and peptidase were higher according to the leaf position from top to bottom; (3) The symptom of premature senescence was accelerated in the mutant at 28 degrees C treatment. The MDA content and the SOD and POD activities between the 24 degrees C and 28 degrees C treatment mutants were not significantly different. Content of chlorophyll and soluble protein of leaves mutant decreased rapidly at 28 degrees C treatment. The results show that pse(t) is sensitive to high temperature. The probable function of PSE(T) is discussed.
Aging
;
physiology
;
Antioxidants
;
metabolism
;
Apoptosis
;
physiology
;
Mutation
;
Oryza
;
classification
;
genetics
;
growth & development
;
Photosynthesis
;
physiology
;
Plant Leaves
;
classification
;
genetics
;
growth & development
;
Plant Proteins
;
genetics
;
metabolism