1.Interactions of cadmium and aluminum toxicity in their effect on growth and physiological parameters in soybean.
Imran Haider SHAMSI ; Kang WEI ; Ghulam JILANI ; Guo-ping ZHANG
Journal of Zhejiang University. Science. B 2007;8(3):181-188
The effect of Al and Cd on the growth, photosynthesis, and accumulation of Al, Cd and plant nutrients in two soybean genotypes were determined using hydroponic culture. There were six treatments: pH 6.5; pH 4.0; pH 6.5+1.0 micromol/L Cd; pH 4.0+1.0 micromol/L Cd; pH 4.0+150 micromol/L Al; pH 4.0+1.0 micromol/L Cd+150 micromol/L Al. The low pH (4.0) and Al treatments caused marked reduction in root length, shoot height, dry weight, chlorophyll content (SPAD value) and photosynthetic rate. Al-sensitive cv. Zhechun 2 accumulated comparatively more Al and Cd in plants than Al-tolerant cv. Liao 1. Compared with pH 6.5, pH 4.0 resulted in significant increase in Cd and Al concentration in plants. Combined application of Cd and Al enhanced their accumulation in roots, but caused a reduction in shoots. The concentrations of all 10 nutrients (P, K, Ca, Mg, Fe, Mn, Cu, Zn and B), except Mo were also increased when plants were exposed to pH lower than pH 6.5. Al addition caused a reduction in the concentration of most nutrients in plant roots and shoots; but K, Mn and Zn in roots were increased. Treatments with Cd alone or together with Al reduced the concentrations of all the plant nutrients in plants. Al-sensitive genotype Zhechun 2 has lower nutrient concentration than Al-tolerant genotype Liao 1. The current findings imply that Al and Cd are synergistic in their effect on plant growth, physiological traits and nutrient uptake.
Aluminum
;
toxicity
;
Cadmium
;
toxicity
;
Hydrogen-Ion Concentration
;
Photosynthesis
;
drug effects
;
Soybeans
;
drug effects
;
growth & development
;
metabolism
2.Effects of S-3307 on photosynthesis of Ligusticum chuanxiong.
Dong-ping ZHAO ; Wen-yu YANG ; Xing-fu CHEN ; Xiong YAO
China Journal of Chinese Materia Medica 2008;33(23):2747-2750
OBJECTIVETo study the effects of S-3307 spraying time and density on photosynthetic characteristic of Ligusticum chuanxiong.
METHODThe photosynthetic characteristic of L. chuanxiong under different S-3307 spraying time and density was studied by plot cultivation experiment.
RESULTThe content of chlorophyll a and chlorophyll b in leaf increased when the spraying density was 20, 40, 80 mg x L(-1), while the net photosynthetic rate was the maximum. When the spraying density was 160 mg x L(-1), the content of chlorophyll a and chlorophyll as well as net photosynthetic rate were not increased.
CONCLUSIONS-3307 spraying can raise the photosynthetic capacity of L. chuanxiong and promote the form of assimilation products.
Chlorophyll ; metabolism ; Ligusticum ; drug effects ; metabolism ; Photosynthesis ; drug effects ; Plant Growth Regulators ; pharmacology
3.Study on membrane type leaf water evaporation inhibitors for improving effect of preventing diseases and pest controlling of .
Dan-Dan WANG ; Zhe LV ; Chang-Qing XU ; Sai LIU ; Jun CHEN ; Xiao PENG ; Yan WU
China Journal of Chinese Materia Medica 2018;43(1):58-64
Through indoor and field comparative experiments, the properties of membrane type leaf evaporation inhibitors and its effects on photosynthesis of and compatibility and synergistic of pesticide were studied. The evaporation inhibitors and were chosen to investigate the suppression of water evaporation and the compatibility with pesticides. The effect of evaporation inhibitors on photosynthesis of leaves was determined by the chlorophyll fluorescence imaging system. The results showed that water evaporation of leaves of different leaf age were evidently suppressed after treated with evaporation inhibitor. The inhibitor was well compatible with pesticide and effectively improved the pesticide efficacy,and had no significant effect on chlorophyll fluorescence parameters. It is concluded that the evaporation inhibitor has good compatibility with the pesticide, and has remarkable effect of restraining moisture evaporation, which make it can be used for reducing the dosage and improving the efficacy of the pesticide in the field of
Chlorophyll
;
analysis
;
Lycium
;
drug effects
;
physiology
;
Pesticides
;
chemistry
;
Photosynthesis
;
Plant Leaves
;
drug effects
;
physiology
;
Plant Transpiration
4.Effects of shading on photosynthetic characteristics of Pinellia ternata leaves.
Jian-Ping XUE ; Xing WANG ; Ai-Min ZHANG ; Xun-Duan HUANG ; Jia-Qing HE ; Li CHANG
China Journal of Chinese Materia Medica 2008;33(24):2896-2900
OBJECTIVETo study the effects of shading on photosynthetic physiology and chlorophyll fluorescence of Pinellia ternata.
METHODPlant growth, chlorophyll content, net photosynthetic rate (P(n)) and chlorophyll fluorescence in P. ternata were investigated under different shading treatments (0%, 70% and 90%) when it grew about 15 cm high.
RESULTThe results showed that fresh weight of a tuber, height, leaf length, width, leaf area, specific leaf area (SLA) and contents of chlorophyll content were enhanced after shaded, and chlorophyll a/b rate declined. Compared with control, net photosynthetic rate, light compensation point (LCP) and light saturation point (LSP) of P. ternata decreased after shading, but apparent quantum yield (AQY) increased; quantum yield of PS II (PhiPS II), minimal fluorescence (F(o)), maximal fluorescence (F(m)), intrinsic photochemical efficiency of PS II (F(v)/F(m)) and photochemical quenching coefficient (qP) were enhanced.
CONCLUSIONCompared with control, all data indicated that there were distinctive differences between the height, SLA, chlorophyll content, P(n) and chlorophyll fluorescence characteristics under the shading treatments (70% and 90%), the fresh weight of a tuber increased after 70% shading, and provided better environmental conditions for the growth of P. ternata.
Chlorophyll ; metabolism ; Light ; Photosynthesis ; drug effects ; Pinellia ; metabolism ; radiation effects ; Plant Leaves ; metabolism ; radiation effects
5.Regulation of exogenous calcium on photosynthetic system of honeysuckle under salt stress.
Lu-Yao HUANG ; Zhuang-Zhuang LI ; Tong-Yao DUAN ; Lei WANG ; Yong-Qing ZHANG ; Jia LI
China Journal of Chinese Materia Medica 2019;44(8):1531-1536
Exogenous calcium can enhance the resistance of certain plants to abiotic stress. However,the role of calcium insaltstressed honeysuckle is unclear. The study is aimed to investigate the effects of exogenous calcium on the biomass,chlorophyll content,gas exchange parameters and chlorophyll fluorescence of honeysuckle under salt stress. The results showed that the calcium-treated honeysuckle had better photochemical properties than the salt-stressed honeysuckle,such as PIABS,PItotal,which represents the overall activity of photosystemⅡ(PSⅡ),and related parameters for characterizing electron transport efficiency φP0,ψE0,φE0,σR,and φR are significantly improved. At the same time,the gas exchange parameters Gs,Ci,Trare also maintained at a high level. In summary,exogenous calcium protects the activity of PSⅡ,promotes the transmission of photosynthetic electrons,and maintains a high Ci,therefore enhances the resistance of honeysuckle under salt stress.
Calcium
;
pharmacology
;
Chlorophyll
;
analysis
;
Lonicera
;
drug effects
;
physiology
;
Photosynthesis
;
Plant Leaves
;
Salt Stress
6.Physiological response and bioaccumulation of Panax notoginseng to cadmium under hydroponic.
Zi-wei LI ; Ye YANG ; Xiu-ming CUI ; Pei-ran LIAO ; Jin GE ; Cheng-xiao WANG ; Xiao-yan YANG ; Da-hui LIU
China Journal of Chinese Materia Medica 2015;40(15):2903-2908
The physiological response and bioaccumulation of 2-year-old Panax notoginseng to cadmium stress was investigated under a hydroponic experiment with different cadmium concentrations (0, 2.5, 5, 10 μmol · L(-1)). Result showed that low concentration (2.5 μmol · L(-1)) of cadmium could stimulate the activities of SOD, POD, APX in P. notoginseng, while high concentration (10 μmol · L(-1)) treatment made activities of antioxidant enzyme descended obviously. But, no matter how high the concentration of cadmium was, the activities of CAT were inhibited. The Pn, Tr, Gs in P. notoginseng decreased gradually with the increase of cadmium concentration, however Ci showed a trend from rise to decline. The enrichment coefficients of different parts in P. notoginseng ranked in the order of hair root > root > rhizome > leaf > stem, and all enrichment coefficients decreased with the increase of concentration of cadmium treatments; while the cadmium content in different parts of P. notoginseng and the transport coefficients rose. To sum up, cadmium could affect antioxidant enzyme system and photosynthetic system of P. notoginseng; P. notoginseng had the ability of cadmium enrichment, so we should plant it in suitable place reduce for reducing the absorption of cadmium; and choose medicinal parts properly to lessen cadmium intake.
Cadmium
;
pharmacokinetics
;
toxicity
;
Hydroponics
;
Panax notoginseng
;
drug effects
;
growth & development
;
metabolism
;
Photosynthesis
;
drug effects
;
Superoxide Dismutase
;
metabolism
7.Effect of enhanced UV-B radiation on metabolism and berberine content of Coptis chinensis.
Quan WEN ; Nan ZHANG ; Ruixia CAO ; Xinyu ZHOU ; Juan TAGN ; Nengbiao WU
China Journal of Chinese Materia Medica 2011;36(22):3063-3069
OBJECTIVETo reveal the response of content berberine in root of Coptis chinensis to different intensity of UV-B radiation, and provide the theory basis for promoting the content of berberine.
METHODFour groups of UV-B radiation were set in the experiment which included: natural light control (0 W x m(-2)), UL (0.05 W x m(-2)), UM (0.10 W x m(-2)), UH (0.20 W x m(-2)). The special photosynthesis character, PPP pathway in the primary metabolism and lyrosinase activity, the changes of berberine in the root of C. chinensis were measured under different UV-B radiation.
RESULTPhotosynthetic pigment, qN, Fo, ETR, activity of glucose-6-phosphate dehydrogenase and the content of berberine in the root of C. chinensis, all of these parameters were lower than other groups under the UH radiation. However, under the UM radiation, C. chinensis protected itself from the light UV-B radiation by promoting the power of photosynthesis and PPP pathway in order to produce more NADPH and secondary metabolites.
CONCLUSIONC. chinensis increases its photosynthetic ability and PPP pathway which can furnish more precursor of secondary metabolites and NADPH that are needed in the secondary metabolism. Furthermore, the content of berberine increases correspondingly. The research provide the example for increasing the content of berberine in C. chinensis cultivation.
Berberine ; analysis ; Coptis ; chemistry ; drug effects ; metabolism ; Glucosephosphate Dehydrogenase ; metabolism ; NADP ; metabolism ; Photosynthesis ; radiation effects ; Ultraviolet Rays
8.Effect of Tongfeng trace elements nutrient balance agent on growth, physiological characteristics and content of active constituents of Glycyrrhiza uralensis.
Dan WANG ; Chunyang WAN ; Wenquan WANG ; Bin GU ; Jiajia LI ; Wenjie WANG ; Songnian HOU ; Zhongwen HAN
China Journal of Chinese Materia Medica 2011;36(15):2027-2031
OBJECTIVETo investigate the effects of Tongfeng trace elements nutrient balance agent on the various growth indicators, physiological indicators, and the contents of liquiritin and glycyrrhizic acid in one-year old Glycyrrhiza uralensis.
METHODThe plants of G. uralensis growing in Chifeng of Inner Mongolia and medicinal garden of Beijing University of Chinese Medicine were fertilized for two times, respectively. The photosynthetic physiological indicators were measured by LI-6400 photosynthetic instrument. The pigments and antioxidase activities of the leaves were determined. Then contents of liquiritin and glycyrrhizic acid in the plants were determined by HPLC.
RESULTThe application of this trace element nutrient balance agent could significantly improve the height, chla and chlb, and the photosynthetic physiology indicator such as P(n), C(i), and G(s). Similarly, it could significantly increase the fresh weight of shoots and dry weight of the roots. Compared with control block (CK), the fertilizer which was diluted by 300 times (T(1)) and 600 times (T(2)) significantly increased the content of glycyrrhizic acid by 24.72% and 20. 23%. There was significant difference between different treatments (P < 0.05).
CONCLUSIONThe Tongfeng trace elements nutrient balance agent could promote growth, physiology and the content of active constituents of G. uralensis, especially the effect of T(1) was superior to T(2).
Enzyme Activation ; drug effects ; Fertilizers ; Flavanones ; metabolism ; Glucosides ; metabolism ; Glycyrrhiza uralensis ; drug effects ; growth & development ; physiology ; Glycyrrhizic Acid ; metabolism ; Oxidoreductases ; metabolism ; Photosynthesis ; drug effects ; Trace Elements ; pharmacology
9.Effects of lead stress on net photosynthetic rate, SPAD value and ginsenoside production in Ginseng (Panax ginseng).
Yao LIANG ; Xiao-Li JIANG ; Fen-Tuan YANG ; Qing-Jun CAO ; Gang LI
China Journal of Chinese Materia Medica 2014;39(16):3054-3059
The paper aimed to evaluate the effects of lead stress on photosynthetic performance and ginsenoside content in ginseng (Panax ginseng). To accomplish this, three years old ginseng were cultivated in pot and in phytotron with different concentrations of lead, ranging from 0 to 1000 mg x kg(-1) soil for a whole growth period (about 150 days). The photosynthetic parameters in leaves and ginsenoside content in roots of ginseng were determined in green fruit stage and before withering stage, respectively. In comparison with the control, net photosynthetic rate and SPAD value in ginseng leaves cultivated with 100 and 250 mg x kg(-1) of lead changed insignificantly, however, ginseng supplied with 500 and 1 000 mg x kg(-1) of lead showed a noticeably decline in the net rate of photosynthesis and SPAD value (P < 0.05), the lowest net photosynthetic rate and SPAD value showed in the treatment supplied with 1 000 mg x kg(-1) of lead, with decline of 57.8%,11.0%, respectively. Total content of ginsenoside in ginseng roots cultivated with 100 mg x kg(-1) of lead showed insignificantly change compared to the control, but the content increased remarkably in treatments supplied with 250, 500, 1 000 mg x kg(-1) of lead (P < 0.05), and highest content appeared in these ginsengs exposed to 1000 mg x kg(-1) of lead. The net photosynthetic rate and SPAD value in leaves of ginseng both showed significantly negative linear correlations with lead stress level (P < 0.01), and significant positive linear correlations between total content of ginsenoside and lead concentration was also observed (P < 0.05). These results strongly indicate that exposing to high level of lead negatively affects photosynthetic performance in ginseng leaves, but benefits for accumulation of secondary metabolism (total content of ginsenoside) in ginseng root.
Ginsenosides
;
analysis
;
metabolism
;
Lead
;
pharmacology
;
Panax
;
chemistry
;
drug effects
;
growth & development
;
metabolism
;
Photosynthesis
;
drug effects
;
Plant Leaves
;
chemistry
;
drug effects
;
growth & development
;
metabolism
;
Spectrophotometry
10.Effects of Ca2+ on photosynthetic parameters of Pinellia ternata and accumulations of active components in heat stress.
Wei-Xing YANG ; Gang-Gang HEI ; Jiao-Jiao LI ; Hong-Min ZHANG ; Lin-Lin LI ; Neng-Biao WU
China Journal of Chinese Materia Medica 2014;39(14):2614-2618
OBJECTIVETo study the effect of exogenous Ca2+ on photosynthetic parameters of Pinellia ternate and accumulations of active components under high temperature stress.
METHODThe pigment contents of P. ternata leaves, photosynthesis parameters and chlorophyll fluorescence parameters of P. ternata leaves, the contents of guanosine, adenosine and polysaccharide in P. ternata tubers were measured based on different concentrations of exogenous Ca2+ in heat stress when the plant height of P. ternata was around 10 cm.
RESULTThe contents of total chlorophyll and ratio of chlorophyll a/b were relatively higher by spaying Ca2+. Compared with the control, spaying 6 mmol x L(-1) Ca2+ significantly enhanced the net photosynthetic rate (Pn), transpiration (Tr) and stomatal limitation (L8), but reduced intercellular CO2 concentration (C) in P. ternata leaves. With the increase of Ca2+ concentration, maximal PS II efficiency (Fv/Fm), actual photosynthetic efficiency (Yield) and photochemical quenching coefficient (qP) initially increased and then decreased, however, minimal fluorescence (Fo) and non-photochemical quenching coefficient (NPQ) went down first and then went up. The contents of guanosine and polysaccharide and dry weight of P. ternata tubers showed a tendency of increase after decrease, and the content of adenosine increased with the increase of Ca2+ concentration. The content of guanosine and polysaccharide in P. ternata tubers and its dry weight reached maximum when spaying 6 mmol x L(-1) Ca2+.
CONCLUSIONWith the treatment of calcium ion, the inhibition of photosynthesis and the damage of PS II system were relieved in heat stress, which increased the production of P. ternata tubers.
Breeding ; Calcium ; pharmacology ; Chlorophyll ; metabolism ; Dose-Response Relationship, Drug ; Heat-Shock Response ; drug effects ; Organ Size ; drug effects ; Photosynthesis ; drug effects ; Pinellia ; drug effects ; growth & development ; metabolism ; physiology ; Plant Leaves ; drug effects ; growth & development ; metabolism