1.Antimicrobial activity of essential oil of Eucalyptus globulus against fish pathogenic bacteria.
Joon Woo PARK ; Mitchell WENDT ; Gang Joon HEO
Laboratory Animal Research 2016;32(2):87-90
The antibacterial activities of the essential oil of Eucalyptus globulus (EOEG) was determined against 7 fish pathogenic bacteria (Edwardsiella tarda, Streptococcus iniae, S. parauberis, Lactococcus garviae, Vibrio harveyi, V. ichthyoenteri and Photobacterium damselae) obtained from farmed olive flounder. The inhibitory activity was evaluated by three methods: Disc diffusion method, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). According to the disc diffusion test, as the concentration of EOEG (5-40 µg) rises, the inhibitory zone increases in size. Compared with amoxicillin, tetracycline and chloramphenicol, EOEG showed similar antibacterial activity. The MIC of EOEG ranged from 7.8 to 125 mg/mL and MBC values ranged from 62 to 250 mg/mL. These results show that EOEG has antimicrobial activity against all seven bacteria, but there was no marked difference between each genus. From these results, it is suggested that EOEG can be used as an antimicrobial agent against fish bacterial diseases in the fish industry.
Agriculture
;
Amoxicillin
;
Bacteria*
;
Chloramphenicol
;
Diffusion
;
Eucalyptus*
;
Flounder
;
Lactococcus
;
Methods
;
Microbial Sensitivity Tests
;
Olea
;
Photobacterium
;
Streptococcus
;
Tetracycline
;
Vibrio
2.Dark variants of luminous bacteria whole cell bioluminescent optical fiber sensor to genotoxicants.
Yaliang SUN ; Tiebo ZHOU ; Jianli GUO ; Yiyong LI
Journal of Huazhong University of Science and Technology (Medical Sciences) 2004;24(5):507-509
A stable dark variant separated from photobacterium phosphoreum (A2) was fixed in agar-gel membrane and immobilized onto an exposed end of a fiber-optic linked with bioluminometer. The variant could emit a luminescent signal in the presence of genotoxic agents, such as Mitomycin C (MC). The performance of this whole-cell optical fiber sensor system was examined as a function of several parameters, including gel probe thickness, bacterial cell density, and diameter of the fiber-optic core and working temperature. An optimal response to a model genotoxicant, Mitomycin C, was achieved with agar-bacterial gel membrane: the thickness of gel membrane was about 5 mm; the cell density of bacteria in gel membrane was about 2.0 x 10(7)/ml; the diameter of fiber-optic core was 5.0 mm; the working temperature was 25 degrees C. Under these optimized conditions, the response time was less than 10 h to Mitomycin C, with a lower detection threshold of 0.1 mg/L.
Biosensing Techniques
;
Fiber Optic Technology
;
Genetic Variation
;
Luminescent Measurements
;
Luminescent Proteins
;
genetics
;
Mitomycin
;
pharmacology
;
toxicity
;
Optical Fibers
;
Photobacterium
;
genetics
;
Transcription, Genetic
;
drug effects
3.Reversion mutation in dark variants of luminous bacteria and its application in gene toxicant monitoring.
Journal of Huazhong University of Science and Technology (Medical Sciences) 2002;22(3):180-2
The luminous intensity of dark variant (S1) separated from photobacterium phosphoreum (A2) was 1/10,000 less than that of wild-type. Ethidium bromide (EB) (0.6 mg/L), Mytomycin C (MC, 0.05 mg/L), 2-amino fluorene (2-AF, 1.0 mg/L) all could strongly induce reversion mutation for S1 within 24 h and increase reversion ratio significantly. The results of experiments indicated that these revertants had stable genetic characteristic and the mutation may take place at gene levels. The mutagenesis to S1 caused by EB, MC and 2-AF was detected and it may be used as a new rapid, simple and sensitive method for gene toxicant monitoring.
*Chemiluminescent Measurements
;
Ethidium/pharmacology
;
Ethidium/toxicity
;
Luciferases/biosynthesis
;
Mitomycins/pharmacology
;
Mitomycins/toxicity
;
Mutagens
;
Mutation/*drug effects
;
Photobacterium/*genetics
;
Toxicology/methods
;
Transcription, Genetic/drug effects
;
Variation (Genetics)
4.Dark variants of luminous bacteria whole cell bioluminescent optical fiber sensor to genotoxicants.
Yaliang, SUN ; Tiebo, ZHOU ; Jianli, GUO ; Yiyong, LI
Journal of Huazhong University of Science and Technology (Medical Sciences) 2004;24(5):507-9
A stable dark variant separated from photobacterium phosphoreum (A2) was fixed in agar-gel membrane and immobilized onto an exposed end of a fiber-optic linked with bioluminometer. The variant could emit a luminescent signal in the presence of genotoxic agents, such as Mitomycin C (MC). The performance of this whole-cell optical fiber sensor system was examined as a function of several parameters, including gel probe thickness, bacterial cell density, and diameter of the fiber-optic core and working temperature. An optimal response to a model genotoxicant, Mitomycin C, was achieved with agar-bacterial gel membrane: the thickness of gel membrane was about 5 mm; the cell density of bacteria in gel membrane was about 2.0 x 10(7)/ml; the diameter of fiber-optic core was 5.0 mm; the working temperature was 25 degrees C. Under these optimized conditions, the response time was less than 10 h to Mitomycin C, with a lower detection threshold of 0.1 mg/L.
Biosensing Techniques
;
Chemiluminescent Measurements
;
Fiber Optics
;
Luminescent Proteins/*genetics
;
Mitomycin/*pharmacology
;
Mitomycin/toxicity
;
Photobacterium/*genetics
;
Transcription, Genetic/drug effects
;
Variation (Genetics)
5.Reversion mutation in dark variants of luminous bacteria and its application in gene toxicant monitoring.
Journal of Huazhong University of Science and Technology (Medical Sciences) 2002;22(3):180-182
The luminous intensity of dark variant (S1) separated from photobacterium phosphoreum (A2) was 1/10,000 less than that of wild-type. Ethidium bromide (EB) (0.6 mg/L), Mytomycin C (MC, 0.05 mg/L), 2-amino fluorene (2-AF, 1.0 mg/L) all could strongly induce reversion mutation for S1 within 24 h and increase reversion ratio significantly. The results of experiments indicated that these revertants had stable genetic characteristic and the mutation may take place at gene levels. The mutagenesis to S1 caused by EB, MC and 2-AF was detected and it may be used as a new rapid, simple and sensitive method for gene toxicant monitoring.
Ethidium
;
pharmacology
;
toxicity
;
Genetic Variation
;
Luciferases
;
biosynthesis
;
Luminescent Measurements
;
Mitomycins
;
pharmacology
;
toxicity
;
Mutagens
;
Mutation
;
drug effects
;
Photobacterium
;
genetics
;
Toxicology
;
methods
;
Transcription, Genetic
;
drug effects
6.In vivo morphological and antigenic characteristics of Photobacterium damselae subsp. piscicida.
Tae S JUNG ; Kim D THOMPSON ; Donatella VOLPATTI ; Marco GALEOTTI ; A ADAMS
Journal of Veterinary Science 2008;9(2):169-175
The present study was conducted to examine the morphology and antigenicity of Photobacterium damselae subsp. piscicida by culturing the bacterium in vivo in the peritoneal cavity of sea bass (Dicentrarchus labrax) within dialysis bags with either a low molecular weight (LMW) cut-off of 25 kDa or a high molecular weight (HMW) cut-off of 300 kDa. Differences were observed in the growth rate between the bacteria cultured in vivo or in vitro. Bacteria cultured in vivo were smaller and produced a capsular layer, which was more prominent in bacteria cultured in the HMW bag. Antigenicity was examined by Western blot analysis using sera from sea bass injected with live Ph. d. subsp. piscicida. The sera recognised bands at 45 and 20 kDa in bacteria cultured in vivo in the LMW bag. Bacteria cultured in vivo in the HMW bag did not express the 45 kDa band when whole cell extracts were examined, although the antigen was present in their extracellular products. In addition, these bacteria had a band at 18 kDa rather than 20 kDa. Differences in glycoprotein were also evident between bacteria cultured in vitro and in vivo. Bacteria cultured in vitro in LMW and HMW bags displayed a single 26 kDa band. Bacteria cultured in the LMW bag in vivo displayed bands at 26 and 27 kDa, while bacteria cultured in vivo in the HMW bag possessed only the 27 kDa band. These bands may represent sialic acid. The significance of the changes observed in the bacterium's structure and antigenicity when cultured in vivo is discussed.
Animals
;
Antigenic Variation/*genetics
;
Antigens, Bacterial/genetics/*immunology
;
Bass/*immunology/microbiology
;
Blotting, Western
;
Carbohydrates/analysis
;
Electrophoresis, Polyacrylamide Gel
;
Membranes, Artificial
;
Microscopy, Electron, Transmission
;
N-Acetylneuraminic Acid/genetics/*immunology
;
Photobacterium/genetics/*immunology/ultrastructure
7.Variation in the molecular weight of Photobacterium damselae subsp. piscicida antigens when cultured under different conditions in vitro.
Tae S JUNG ; Kim D THOMPSON ; Donatella VOLPATTI ; Marco GALEOTTI ; A ADAMS
Journal of Veterinary Science 2007;8(3):255-261
The antigenicity of Photobacterium damselae (Ph. d.)subsp. piscicida, cultured in four different growth media[tryptone soya broth (TSB), glucose-rich medium (GRM),iron-depleted TSB (TSB+IR-), and iron-depleted GRM(GRM+IR-)] was compared by enzyme-linked immuno-sorbent assay (ELISA) and Western blot analysis usingsera obtained from sea bass (Dicentrarchus labrax) raisedagainst live or heat-killed Ph. d. subsp. piscicida. Theantigenic expression of Ph. d. subsp. piscicida was found todiffer depending on the culture medium used. A significantlyhigher antibody response was obtained with iron-depletedbacteria by ELISA compared with non-iron depletedbacteria obtained from the sera of sea bass raised againstlive Ph. d. subsp. piscicida. The sera from sea bass raisedagainst live bacteria showed a band at 22kDa in bacteriacultured in TSB+IR- or GRM+IR- when bacteria thathad been freshly isolated from fish were used for thescreening, while bands at 24 and 47kDa were observedwith bacteria cultured in TSB or GRM. When bacteriawere passaged several times on tryptic soya agar prior toculturing in the four different media, only bands at 24 and47kDa were recognized, regardless of the medium used toculture the bacteria. It would appear that the molecularweight of Ph. d. subsp. piscicida antigens change in thepresence of iron restriction, and sera from sea bassinfected with live bacteria are able to detect epitopes onthe antigens after this shift in molecular weight.
Animals
;
Antibodies, Bacterial/blood
;
Antigens, Bacterial/immunology/*metabolism
;
Bass/blood/*immunology
;
Blotting, Western/veterinary
;
Cell Count/methods
;
Culture Media
;
Enzyme-Linked Immunosorbent Assay/veterinary
;
Fish Diseases/immunology/*microbiology
;
Molecular Weight
;
Pasteurella Infections/immunology/microbiology/*veterinary
;
Photobacterium/*immunology
8.Prediction of environmental fate and effects of heteroatomic polycyclic aromatics by QSARs: the position of n-octanol/water partition coefficients.
P de VOOGT ; J W WEGENER ; J C KLAMER ; G A van ZIJL ; H GOVERS
Biomedical and Environmental Sciences 1988;1(2):194-209
The HPLC and TLC retention, n-octanol/water partition coefficients (log Kow), bioconcentration factors, and acute toxicity data of 29 heteroatomic polycyclic aromatic hydrocarbons and 7 parent polycyclic aromatics were determined experimentally. For the same set of compounds, molecular weights, fragmental log Kow values, and molecular connectivities were calculated. Quantitation of the mathematical relationships between the variables was used to validate the predictive potential of various parameters. The importance of log Kow in predictive studies is highlighted. It is concluded that the internal concentration of a pollutant in the organism should be used as a parameter in future QSAR work.
1-Octanol
;
Animals
;
Chromatography, High Pressure Liquid
;
Chromatography, Thin Layer
;
Daphnia
;
drug effects
;
Ecology
;
Environmental Pollution
;
prevention & control
;
Octanols
;
Photobacterium
;
drug effects
;
Poecilia
;
metabolism
;
Polycyclic Compounds
;
metabolism
;
toxicity
;
Regression Analysis
;
Solubility
;
Structure-Activity Relationship
;
Water