1.Effects of stereoscopic cultivation on soil microorganism, enzyme activity and the agronomic characters of Panax notoginseng.
Pei-ran LIAO ; Xiu-ming CUI ; Lei LAN ; Wei-dong CHEN ; Cheng-xiao WANG ; Xiao-yan YANG ; Da-hui LIU ; Ye YANG
China Journal of Chinese Materia Medica 2015;40(15):2915-2920
Compartments of soil microorganism and enzymes between stereoscopic cultivation (three storeys) and field cultivation (CK) of Panax notoginseng were carried out, and the effects on P. notoginseng agronomic characters were also studied. Results show that concentration of soil microorganism of stereoscopic cultivation was lower than field cultivation; the activity of soil urea enzyme, saccharase and neutral phosphatase increased from lower storey to upper storey; the activity of soil urea enzyme and saccharase of lower and upper storeys were significantly lower than CK; agronomic characters of stereoscopic cultivated P. notoginsengin were inferior to field cultivation, the middle storey with the best agronomic characters among the three storeys. The correlation analysis showed that fungi, actinomycetes and neutral phosphatase were significantly correlated with P. notoginseng agronomic characters; concentration of soil fungi and bacteria were significantly correlated with the soil relative water content; actinomycete and neutral phosphatase were significantly correlated with soil pH and relative water content, respectively; the activities of soil urea enzyme and saccharase were significantly correlated with the soil daily maximum temperature difference. Inconclusion, The current research shows that the imbalance of soil microorganism and the acutely changing of soil enzyme activity were the main reasons that caused the agronomic characters of stereoscopic cultivated P. notoginseng were worse than field cultivation. Thus improves the concentration of soil microorganism and enzyme activity near to field soil by improving the structure of stereoscopic cultivation is very important. And it was the direction which we are endeavoring that built better soil ecological environment for P. notoginseng of stereoscopic cultivation.
Hydrogen-Ion Concentration
;
Panax notoginseng
;
growth & development
;
Phosphoric Monoester Hydrolases
;
metabolism
;
Soil
;
chemistry
;
Soil Microbiology
;
beta-Fructofuranosidase
;
metabolism
2.Determination of the catalytic structures of methyl parathion hydrolase.
Xu-Ping WU ; Wei-Dong LIU ; Hui CAO ; Shun-Peng LI ; Zhong-Li CUI
Chinese Journal of Biotechnology 2005;21(6):998-1002
Methyl parathion hydrolase (MPH) is a novel member of organophosphorus hydrolase. In this study, mpd gene was expressed in Escherichia coli DH5alpha with its native promoter. MPH was purified to homogeneity. Results show that metal-chelating compounds cannot inhabit the enzyme activity. Inductively Coupled Plasma-Atomic Emission Spectrometry analysis showed that MPH is a zinc-containing enzyme, the Zinc to enzyme molar ratio is near 2:1. In order to investigate critical residues related to enzymatic activity of MPH, chemical modification reagents EDC, DEPC, butanedione and pyridoxal were tested. Experiment results suggested that aspartate, glutamate, arginine and lysine are not important for enzyme activity. But DEPC, which can modify histidine residue, inactivate the enzyme activity greatly, and the inactivation rate is 9.6 h(-1). This result reflects that histidine residues are essential for enzyme activity. All these results provide basic data for MPH structure and molecular evolution research.
Aryldialkylphosphatase
;
chemistry
;
Enzyme Activation
;
drug effects
;
Escherichia coli
;
genetics
;
metabolism
;
Histidine
;
chemistry
;
Phosphoric Monoester Hydrolases
;
chemistry
;
Recombinant Fusion Proteins
;
biosynthesis
;
chemistry
;
genetics
3.Research progress of abnormal phosphorylation of microtubule-associated tau protein and of the targeted inhibition of the phosphorylation.
Futao ZHOU ; Shuangrong CHEN ; Xuechuan SUN
Journal of Biomedical Engineering 2012;29(4):788-792
Progressive dementia is described as the first and most prominent symptom of Alzheimer's disease (AD), and hyperphosphorylation of microtubule associated Tau protein (MAPT) plays a key role in neurodegeneration and neuronal dysfunction in AD and other neurodegenerative diseases. This paper reviews several protein kinases and phosphatases which can phosphorylate/dephosphorylate Tau protein, and evaluates a therapeutic strategy based on targeted inhibition of Tau kinases and activation of Tau phosphatases.
Alzheimer Disease
;
metabolism
;
physiopathology
;
Glycogen Synthase Kinase 3
;
antagonists & inhibitors
;
metabolism
;
Humans
;
Neurodegenerative Diseases
;
metabolism
;
physiopathology
;
Phosphoric Monoester Hydrolases
;
metabolism
;
Phosphorylation
;
Protein Kinases
;
metabolism
;
tau Proteins
;
chemistry
;
metabolism
;
physiology
4.Crystal structures and biochemical studies of human lysophosphatidic acid phosphatase type 6.
Jun LI ; Yu DONG ; Xingru LÜ ; Lu WANG ; Wei PENG ; Xuejun C ZHANG ; Zihe RAO
Protein & Cell 2013;4(7):548-561
Lysophosphatidic acid (LPA) is an important bioactive phospholipid involved in cell signaling through Gprotein-coupled receptors pathways. It is also involved in balancing the lipid composition inside the cell, and modulates the function of lipid rafts as an intermediate in phospholipid metabolism. Because of its involvement in these important processes, LPA degradation needs to be regulated as precisely as its production. Lysophosphatidic acid phosphatase type 6 (ACP6) is an LPA-specific acid phosphatase that hydrolyzes LPA to monoacylglycerol (MAG) and phosphate. Here, we report three crystal structures of human ACP6 in complex with malonate, L-(+)-tartrate and tris, respectively. Our analyses revealed that ACP6 possesses a highly conserved Rossmann-foldlike body domain as well as a less conserved cap domain. The vast hydrophobic substrate-binding pocket, which is located between those two domains, is suitable for accommodating LPA, and its shape is different from that of other histidine acid phosphatases, a fact that is consistent with the observed difference in substrate preferences. Our analysis of the binding of three molecules in the active site reveals the involvement of six conserved and crucial residues in binding of the LPA phosphate group and its catalysis. The structure also indicates a water-supplying channel for substrate hydrolysis. Our structural data are consistent with the fact that the enzyme is active as a monomer. In combination with additional mutagenesis and enzyme activity studies, our structural data provide important insights into substrate recognition and the mechanism for catalytic activity of ACP6.
Amino Acid Sequence
;
Catalytic Domain
;
Crystallography, X-Ray
;
Humans
;
Malonates
;
metabolism
;
Models, Molecular
;
Molecular Sequence Data
;
Nitrophenols
;
metabolism
;
Organophosphorus Compounds
;
metabolism
;
Phosphoric Monoester Hydrolases
;
chemistry
;
classification
;
metabolism
;
Tartrates
;
metabolism
;
Water
;
metabolism
5.Effect of fertilization levels on soil microorganism amount and soil enzyme activities.
Wei-Ling WANG ; Jun-Bo DU ; Fu-Li XU ; Xiao-Hu ZHANG
China Journal of Chinese Materia Medica 2013;38(22):3851-3856
Field experiments were conducted in Shangluo pharmaceutical base in Shaanxi province to study the effect of nitrogen, phosphorus and potassium in different fertilization levels on Platycodon grandiflorum soil microorganism and activities of soil enzyme, using three-factor D-saturation optimal design with random block design. The results showed that N0P2K2, N2P2K0, N3P1K3 and N3P3K1 increased the amount of bacteria in 0-20 cm of soil compared with N0P0K0 by 144.34%, 39.25%, 37.17%, 53.58%, respectively. The amount of bacteria in 2040 cm of soil of N3P1K3 increased by 163.77%, N0P0K3 increased the amount of soil actinomycetes significantly by 192.11%, while other treatments had no significant effect. N2P0K2 and N3P1K3 increased the amounts of fungus significantly in 0-20 cm of soil compared with N0P0K0, increased by 35.27% and 92.21%, respectively. N3P0K0 increased the amounts of fungus significantly in 20-40 cm of soil by 165.35%, while other treatments had no significant effect. All treatments decrease soil catalase activity significantly in 0-20 cm of soil except for N2P0K2, and while N2P2K0 and NPK increased catalase activity significantly in 2040 cm of soil. Fertilization regime increased invertase activity significantly in 2040 cm of soil, and decreased phosphatase activity inordinately in 0-20 cm of soil, while increased phosphatase activity in 2040 cm of soil other than N1P3K3. N3P0K0, N0P0K3, N2P0K2, N2P2K0 and NPK increased soil urease activity significantly in 0-20 cm of soil compared with N0P0K0 by 18.22%, 14.87%,17.84%, 27.88%, 24.54%, respectively. Fertilization regime increased soil urease activity significantly in 2040 cm of soil other than N0P2K2.
Bacteria
;
enzymology
;
growth & development
;
isolation & purification
;
metabolism
;
Bacterial Proteins
;
analysis
;
metabolism
;
Catalase
;
analysis
;
metabolism
;
Fertilizers
;
analysis
;
Fungal Proteins
;
analysis
;
metabolism
;
Fungi
;
enzymology
;
growth & development
;
isolation & purification
;
metabolism
;
Nitrogen
;
metabolism
;
Phosphoric Monoester Hydrolases
;
analysis
;
metabolism
;
Phosphorus
;
metabolism
;
Potassium
;
metabolism
;
Soil
;
chemistry
;
Soil Microbiology
;
Urease
;
analysis
;
metabolism
6.Inositol 5'-phosphatase, SHIP1 interacts with phospholipase C-gamma1 and modulates EGF-induced PLC activity.
Minseok SONG ; Myung Jong KIM ; Sanghoon HA ; Jong Bae PARK ; Sung Ho RYU ; Pann Ghill SUH
Experimental & Molecular Medicine 2005;37(3):161-168
Phospholipase C-gamma1, containing two SH2 and one SH3 domains which participate in the interaction between signaling molecules, plays a significant role in the growth factor-induced signal transduction. However, the role of the SH domains in the growth factor-induced PLC-gamma1 regulation is unclear. By peptide-mass fingerprinting analysis, we have identified SHIP1 as the binding protein for the SH3 domain of PLC-gamma1. SHIP1 was co-immunoprecipitated with PLC-gamma1 and potentiated EGF-induced PLC-gamma1 activation. However, inositol 5'-phosphatase activity of SHIP1 was not required for the potentiation of EGF-induced PLC-gamma1 activation. Taken together, these results suggest that SHIP1 may function as an adaptor protein which can potentiate EGF-induced PLC-gamma1 activation without regards to its inositol 5'-phosphatase activity.
Adaptor Proteins, Signal Transducing
;
Amino Acid Sequence
;
Animals
;
COS Cells/enzymology
;
Cercopithecus aethiops
;
Enzyme Activation
;
Epidermal Growth Factor/*pharmacology
;
Immunoprecipitation
;
Inositol 1,4,5-Trisphosphate/metabolism
;
Molecular Sequence Data
;
Phospholipase C/chemistry/*metabolism
;
Phosphoric Monoester Hydrolases/chemistry/*metabolism
;
Protein Binding
;
Signal Transduction
;
src Homology Domains/*physiology