1.Study on preparation and thermosensitive release property of composite phospholipid liposomes containing total alkaloids from Strychnos nux-vomica.
Chao-Qin HE ; Meng-Ya HU ; Hui ZHANG ; Hao CHANG ; Jun CHEN ; Bao-Chang CAI
China Journal of Chinese Materia Medica 2013;38(9):1366-1370
To prepare composite phospholipid liposomes containing total alkaloids of Strychnos nux-vomica with hydrogenated soybean phosphatidylcholine (HSPC) and 1, 2-dipalmitoyl-sn-glycero-3-phosphacholine (DPPC), and compare with normal DPPC thermosensitive liposomes for thermosensitive release property. Total alkaloids were extracted from S. nux-vomica with the impregnation method and further purified. Liposomes containing total alkaloids, thermosensitive liposomes and conventional thermosensitive liposomes without thermosensitive release property were prepared by ammonium sulfate transmembrane gradients and stealth liposome technique. Their encapsulation efficiency (EE), grain size, zeta potential and drug release behavior were compared. Their EEs and zeta potentials were almost identical; but the grain sizes of composite phospholipid liposomes and thermosensitive liposomes were significantly smaller than conventional liposomes. After comparing release behaviors of the three liposomes at 37, 43 degrees C, we found that the release of composite phospholipid liposomes was significantly lower than that of thermosensitive liposomes at 37 degrees C, but higher than that of thermosensitive liposomes at 43 degrees C. Meanwhile, conventional liposomes, with a very high phase-transition temperature, showed only slight release behavior at both temperatures. The study results showed that composite phospholipid liposomes had a better thermosensitive release behavior when the dosage of lysophosphatidic was reduced by 2. 5 times.
Alkaloids
;
chemistry
;
Liposomes
;
chemistry
;
Phospholipids
;
chemistry
;
Strychnos nux-vomica
;
chemistry
2.An investigation on formation mechanisms and preparation of curcumin phospholipid complex.
An-chang LIU ; Li-xia ZHAO ; Guang-xi ZHAI ; Hong-xiang LOU ; Jing-shan DU
China Journal of Chinese Materia Medica 2008;33(17):2112-2117
The purpose of this study was to investigate the preparation and characteristics of curcumin phospholipid complex, including the effects of reaction time, reaction solvent, reaction concentration and reaction temperature. Preparation technology resulted in that 0.5 g curcumin and 10 g soy phospholipid dissolved in 100 mL anhydrous alcohol, were stirred 1 h in 50 degrees C waterbath, then steamed alcohol in decompression, collected solid residue and vacuum dried for 12 h. The physicochemical properties for the new complex including IR spectrometer, mass spectrograph and HNMR equipment were detected. As a result, the formation of the complex is based on the reaction between phospholipid polar group rounding phosphorus atom and curcumin. This result gave the evidence for the formation mechanism of phospholipid complex.
Curcuma
;
chemistry
;
Drugs, Chinese Herbal
;
chemistry
;
Phospholipids
;
chemistry
3.Evaluation of interaction between drugs and ordered phospholipid membrane by immobilized artificial membrane chromatography.
Jin SUN ; Gang CHENG ; Zhong-gui HE ; Shu-jun WANG
Acta Pharmaceutica Sinica 2003;38(9):702-706
AIMTo investigate the interaction between drugs and ordered phospholipid membrane using immobilized artificial membrane chromatography (IAMC).
METHODSIAMC was used to determine the interaction drugs with phospholipid membrane, expressed as membrane affinity (lg kIAM). An n-octanol/buffer system was also employed as the reference hydrophobicity (lg Do/w,7.4).
RESULTSWithin the range of used acetonitrile percentages (phi) 0-30% in mobile phase, retention index (lg kIAM) showed excellent correlation with phi. Intercepts of fitted straight lines between lg kIAM and phi were comparable but slopes were much different for the three organic modifiers (acetonitrile, ethanol and methanol). Effects by adding CH2 substituent on lipophilicity difference (delta lg kIAM and delta lg Do/w,7.4) were similar for p-hydroxyl benzoic methyl ester to butyl ester, whereas different for p-hydroxylbenzoic acid to methyl ester.
CONCLUSIONIAMC system is a convenient, efficient and rapid tool for determining membrane interaction.
Membranes, Artificial ; Octanols ; chemistry ; Pharmaceutical Preparations ; chemistry ; Phospholipids ; chemistry
4.Studies on hydroxyapatite applicatied in coprecipitate of total salvianolic acids phospholipid complex.
Xiao-Yun CHEN ; Zhen-Hai ZHANG ; Dan LIU ; E SUN ; Xiao-Bin JIA
China Journal of Chinese Materia Medica 2014;39(6):992-996
The purpose of this research was to prepare total salvianolic acids-phytosome-HA coprecipitate to improve drug dissolution and its micromeritic properties. Firstly, the coprecipitate was prepared by solvent method and in vitro dissolution of tripterine was performed with the salvianolic acid B and danshensu as criteria. At the same time, the micromeritic properties was characterizated, the structure of samples was characterized by TEM, DSC, XRD and FTIR. Results showed that when the ratio of drug to HA was 1:2, it had a better dissolution, the accumulative drug-release percent in vitro at 60 min was over 90%. At the same time, it has good liquidity and low moisture absorption. Its micromeritic properties have improved. It is proved that the drug still existed amorphously by microstructure analysis. The preparation process is simple and feasible, it has practical value.
Alkenes
;
chemistry
;
Chemical Precipitation
;
Chemistry, Pharmaceutical
;
methods
;
Durapatite
;
chemistry
;
Phospholipids
;
chemistry
;
Polyphenols
;
chemistry
;
Time Factors
5.Detailed docking of "phospholipid" biological metabolizing pathway.
Journal of Central South University(Medical Sciences) 2014;39(6):541-551
OBJECTIVE:
To construct protein functional network according to the physiological process in vivo and functionally based distinct families, to understand biological functions, and to make wise decisions.
METHODS:
We described here a very effective strategy combining with multiple-docking and protein-ligand binding-affinity fingerprint method to generate bio-functional network and pathway and reveal the protein "unknown" functions and their relationship.
RESULTS:
Totally 27 sets of proteins and 28 bio-active molecules were used to reconstruct the possible phospholipids metabolic network by computational simulation strategy. The protein-ligand network reconstruction and pathway based drug design showed that the direct interaction investigation might be effective in complex biological system study.
CONCLUSION
Even for weak and moderate interactions in the real biology system, the relationship between each other can be achieved by fingerprint analysis based on multiple-docking data. The results of these calculations give valuable insight into the pathway and the function relationship among these proteins. This method can be a very useful tool for protein classification, target selection, and inhibitor design.
Ligands
;
Molecular Docking Simulation
;
Phospholipids
;
metabolism
;
Proteins
;
chemistry
6.Preparation and characterization of microbubbles loaded with hydrogen sulfide.
Gangbin CHEN ; Li YANG ; Xinzhong LI ; Lintao ZHONG ; Juefei WU ; Jianping BIN
Journal of Southern Medical University 2015;35(12):1672-1677
OBJECTIVETo prepare a phospholipid-coated microbubble loaded with hydrogen sulfide (HSMB) and evaluate its physicochemical and acoustic properties.
METHODSHydrogen sulfide and perfluoropropane were mixed at the ratios of 4:0, 3:1, 2:2, 1:3, and 0:4 to prepare hydrogen sulfide-loaded microbubbles (termed HSMB4:0, HSMB3:1, HSMB2:2, HSMB1:3, and HSMB0:4, respectively). The microbubble concentration and diameter were investigated and their stability were evaluated. The optimal ratio of hydrogen sulfide and perfluoropropane was determined according to the changes of microbubble concentration. The changes of dissolved hydrogen sulfide and concentration of the microbubbles were investigated after exposure to ultrasound, and their acoustic enhancement effects in the myocardium and kidney were observed after intravenous injection in rats.
RESULTSHSMBs were milky in color and spherical in shape without aggregations. The concentrations of HSMB4:0 and HSMB3:1 were lower than that of HSMB2:2 and decreased with time. HSMB2:2, HSMB1:3 and HSMB0:4 showed comparable concentrations and were stable within 72 h. After exposure to ultrasound, the concentration of HSMB2:2 decreased while the dissolved hydrogen sulfide increased significantly. Intravenous injection of HSMB2:2 produced a satisfactory contrast-enhancing effect in the myocardium and kidney of rats.
CONCLUSIONHSMB prepared with the hydrogen sulfide to perfluoropropane ratio of 2:2 has excellent contrast-enhancing effect and is capable of carrying and releasing hydrogen sulfide upon ultrasound exposure to potentially allow visual site-specific delivery of hydrogen sulfide.
Animals ; Contrast Media ; chemistry ; Fluorocarbons ; chemistry ; Heart ; Hydrogen Sulfide ; chemistry ; Kidney ; Microbubbles ; Phospholipids ; chemistry ; Rats ; Ultrasonics
7.Characterization and applications of self-assembled lipid films: atomic force microscopy studies.
Journal of Biomedical Engineering 2008;25(2):472-475
Self-assembled lipid films provide new insights into the structure-function relationships of biomolecules at the molecular level. It has potential applications in biology and bionics. In this paper, with regard to atomic force microscopy (AFM) characterization, the surface structures and growth kinetics of self-assembled lipid films as well as their applications in high-resolution AFM imaging of surface-immobilized biomolecules such as proteins, DNA and enzymes are reviewed.
DNA
;
chemistry
;
Humans
;
Lipid Bilayers
;
chemistry
;
Microscopy, Atomic Force
;
methods
;
Phospholipids
;
chemistry
;
Proteins
;
chemistry
8.Improvement of solubility of puerarin through deoxycholate/phospholipid mixed micelle preparing technology.
Dianhong HE ; Liwei HAN ; Yuan WANG ; Jian NI ; Shouying DU
China Journal of Chinese Materia Medica 2010;35(11):1395-1398
OBJECTIVETo prepare puerarin deoxycholate/phospholipid mixed micelle to increase the solubility of puerarin.
METHODSodium deoxycholate and soybean phospholipids were used to prepare puerarin mixed micelle through orthogonal design experiments. With the solubility, shape and particle size as the response indexes, the preparing process of puerarin mixed micelle was optimized.
RESULTThe optimized process for the puerarin deoxycholate/phospholipid mixed micelle was that the puerarin, soya phosphatidylcholine and sodium deoxycholate with the mole ratio of 3:2:4 should be dissolved in methanol-chloroform (1:1), and the solvents should be evaporated rotatively at 30 degrees C. The particle diameter of the mixed micelle was (64.8 +/- 13) nm (volume-weighted particle size distribution), and the solubility was 0.811 1 g x L(-1) in water at the room temperature, which was 22.3 times as that of the raw puerarin (0.036 4 g x L-1).
CONCLUSIONThe puerarin deoxycholate/phospholipid mixed micelle can improve the solubility of puerarin significantly.
Deoxycholic Acid ; chemistry ; Isoflavones ; chemistry ; Micelles ; Particle Size ; Phospholipids ; chemistry ; Plant Extracts ; chemistry ; Solubility
9.Preparation of multivariant-phospholipid complex of Ginkgo biloba extract.
Zhipeng CHEN ; Jun SUN ; Dan LIU ; Yanyu XIAO ; Baochang CAI
China Journal of Chinese Materia Medica 2010;35(16):2146-2150
OBJECTIVETo prepare Ginkgo biloba extract multivariant-phospholipid complex(MGBP) and improve the vitro dissolution of ginkgo total flavonoids by adding another water-soluble carrier in phospholipid complex.
METHODMGBP was prepared using solvent evaporation method with Poloxamer-188 as the carrier and the multivariant complex was analyzed by DSC and X-diffraction technique. The physicochemical properties of the MGBP we also studied, including apparent oil-water distribution coefficients in different pH aqueous solution and its release in vitro.
RESULTThe in vitro dissolution of ginkgo total flavonoids was significantly increased while the apparent oil-water distribution coefficient was improved after been made into multivariant-phospholipid complex.
CONCLUSIONThe preparation technology of MGBP is simple and economic. MGBP can significantly increase the vitro dissolution of ginkgo total flavonoids and improve oil-water distribution coefficients, which can be the reference for the bioavailability in vivo in the further researches.
Ginkgo biloba ; chemistry ; Hydrogen-Ion Concentration ; Hydrophobic and Hydrophilic Interactions ; Phospholipids ; chemistry ; Water ; chemistry
10.The advance of research for biocompatibility of medical polyurethanes.
Jiehua LI ; Xingyi XIE ; Chengsheng HE ; Cuirong FAN ; Yinping ZHONG
Journal of Biomedical Engineering 2002;19(2):315-319
Polyurethanes are popularly used in cardiovascular and other biomedical fields due to their good biocompatibility as well as mechanical properties. But they are subject to biodegradation in vivo for a long time, and cause inflammation, so improving the biocompatibility of medical polyurethanes is an important subject of biomaterials. Recent researches have focused on biological modelling of biomaterials for improving the biocompatibility of polyurethanes. This paper reviews two main methods for improving biocompatibility of polyurethanes-endothelial cells seeding and mimic biomembrane (phospholipid surface), and summarizes the main procedures and questions of these two methods.
Biocompatible Materials
;
chemistry
;
Endothelial Cells
;
drug effects
;
Humans
;
Phospholipids
;
chemistry
;
Polyurethanes
;
chemistry