1.Major house dust mite allergen, Der p I, activates phospholipase D in human peripheral blood mononuclear cells from allergic patients: involvement of protein kinase C.
Jae Won OH ; Jong Hoon KIM ; Ki Sung LEE ; Joong Soo HAN
Experimental & Molecular Medicine 2000;32(2):67-71
The major house-dust-mite allergen, Der p I, stimulates the phospholipase D (PLD) in peripheral blood mononuclear cells (PBMC) from allergic patients with maximal responses after 30 min exposure. At 30 min, Der p I stimulated PLD activity by 1.4-fold in mild, 1.6-fold in moderate and 2-fold in severe allergic patients over control values (p < 0.05). When the cells were pretreated for 24 h with phorbol myristate acetate to down-regulate protein kinase C (PKC), PLD stimulation by Der p I was largely abolished. These results indicate that in PBMC from allergic patients, Der p I can stimulate PLD activity, and that PKC activation is involved in this stimulation.
Adult
;
Allergens/metabolism*
;
Allergens/immunology
;
Animal
;
Down-Regulation (Physiology)
;
Glycoproteins/metabolism*
;
Glycoproteins/immunology
;
Human
;
Hypersensitivity/metabolism
;
Hypersensitivity/immunology
;
Hypersensitivity/blood
;
IgE/blood
;
In Vitro
;
Leukocytes, Mononuclear/metabolism
;
Leukocytes, Mononuclear/immunology
;
Mites/metabolism
;
Mites/immunology
;
Phospholipase D/metabolism*
;
Phospholipase D/immunology
;
Protein Kinase C/metabolism*
;
Skin Tests
;
Tetradecanoylphorbol Acetate/pharmacology
2.Role of phospholipase D in priming of rat peripheral leukocytes by lipopolysaccharide and antigen.
Bo JIANG ; Yun-bi LU ; Han-liang ZHOU ; Zhong-miao ZHANG
Journal of Zhejiang University. Medical sciences 2003;32(4):304-314
OBJECTIVETo investigate whether or not lipopolysaccharide (LPS) and ovalbumin (OA) prime rat peripheral leukocytes, the effect of sensitization on priming and the role of phospholipase D in priming.
METHODSThe peripheral leukocytes were separated and purified from sensitized or unsensitized rats. LPS or OA was used as a priming agent and formylmethionylphenylalanine (fMLP) as an activating agent. Degradation of leukocyte was determined by measurement of elastase release and myeloperoxidase (MPO) activity. Phospholipase D (PLD) activity was assayed by the generation of choline,which was measured by choline-oxidase-catalyzed formation of H(2)O(2) and Trinder reaction.
RESULTCompared with cells treated by fMLP alone,leukocytes from unsensitized rat challenged with fMLP after incubated with LPS released more elastase and MPO (P<0.05). But there was no significant difference between leukocytes challenged with fMLP after incubated with OA and fMLP treated alone. In sensitized rat,there was no difference between leukocytes challenged with fMLP after incubated with LPS and fMLP treated alone. But leukocytes challenged with fMLP after incubated with OA released significantly more elastase and MPO than fMLP treated alone (P<0.05). A significant correlation was obtained between the release of elastase and PLD activity (r(s)=0.51,P<0.01), and also between the release of MPO and PLD activity (r(s)=0.73,P<0.01) in unsensitized rat. In sensitized rat, it was 0.48 (P<0.01) and 0.37 (P<0.05) respectively.
CONCLUSION(1) LPS primes peripheral leukocytes from unsensitized rats; (2) OA primes peripheral leukocytes from actively sensitized rats; (3) PLD plays a role in priming of rat peripheral leukocytes.
Animals ; Leukocyte Elastase ; secretion ; Leukocytes ; drug effects ; enzymology ; Lipopolysaccharides ; pharmacology ; Male ; N-Formylmethionine Leucyl-Phenylalanine ; pharmacology ; Ovalbumin ; immunology ; Peroxidase ; blood ; Phospholipase D ; physiology ; Rats ; Rats, Sprague-Dawley
3.D60-sensitive tyrosine phosphorylation is involved in Fas-mediated phospholipase D activation.
Jong Gon KIM ; In Cheol SHIN ; Ki Sung LEE ; Joong Soo HAN
Experimental & Molecular Medicine 2001;33(4):303-309
Both Fas and PMA can activate phospholipase D via activation of protein kinase Cbeta in A20 cells. Phospholipase D activity was increased 4 fold in the presence of Fas and 2.5 fold in the presence of PMA. The possible involvement of tyrosine phosphorylation in Fas-induced activation of phospholipase D was investigated. In five minute after Fas cross-linking, there was a prominent increase in tyrosine phosphorylated proteins, and it was completely inhibited by D609, a specific inhibitor of phosphatidylcholine-specific phospholipase C (PC-PLC). A tyrosine kinase inhibitor, genistein, can partially inhibit Fas-induced phospholipase D activation. There were no effects of genistein on Fas-induced activation of PC-PLC and protein kinase C. These results strongly indicate that tyrosine phosphorylation may in part account for the increase in phospholipase D activity by Fas cross-linking and D609 can block not only PC-PLC activity but also tyrosine phosphorylation involved in Fas-induced phospholipase D activation.
Animal
;
Antibodies, Monoclonal/immunology/*pharmacology
;
Antigens, CD95/immunology/*metabolism
;
Bridged Compounds/*pharmacology
;
Cell Line
;
Cross-Linking Reagents
;
Dose-Response Relationship, Immunologic
;
Enzyme Activation
;
Genistein/pharmacology
;
Hydrolysis
;
Lymphoma/pathology
;
Mice
;
Phospholipase C/*antagonists & inhibitors
;
Phospholipase D/*metabolism
;
Phosphorylation
;
Phosphorylcholine/metabolism
;
Solubility
;
Thiones/*pharmacology
;
Tumor Cells, Cultured
;
Tyrosine/*metabolism
;
Water/chemistry
4.D60-sensitive tyrosine phosphorylation is involved in Fas-mediated phospholipase D activation.
Jong Gon KIM ; In Cheol SHIN ; Ki Sung LEE ; Joong Soo HAN
Experimental & Molecular Medicine 2001;33(4):303-309
Both Fas and PMA can activate phospholipase D via activation of protein kinase Cbeta in A20 cells. Phospholipase D activity was increased 4 fold in the presence of Fas and 2.5 fold in the presence of PMA. The possible involvement of tyrosine phosphorylation in Fas-induced activation of phospholipase D was investigated. In five minute after Fas cross-linking, there was a prominent increase in tyrosine phosphorylated proteins, and it was completely inhibited by D609, a specific inhibitor of phosphatidylcholine-specific phospholipase C (PC-PLC). A tyrosine kinase inhibitor, genistein, can partially inhibit Fas-induced phospholipase D activation. There were no effects of genistein on Fas-induced activation of PC-PLC and protein kinase C. These results strongly indicate that tyrosine phosphorylation may in part account for the increase in phospholipase D activity by Fas cross-linking and D609 can block not only PC-PLC activity but also tyrosine phosphorylation involved in Fas-induced phospholipase D activation.
Animal
;
Antibodies, Monoclonal/immunology/*pharmacology
;
Antigens, CD95/immunology/*metabolism
;
Bridged Compounds/*pharmacology
;
Cell Line
;
Cross-Linking Reagents
;
Dose-Response Relationship, Immunologic
;
Enzyme Activation
;
Genistein/pharmacology
;
Hydrolysis
;
Lymphoma/pathology
;
Mice
;
Phospholipase C/*antagonists & inhibitors
;
Phospholipase D/*metabolism
;
Phosphorylation
;
Phosphorylcholine/metabolism
;
Solubility
;
Thiones/*pharmacology
;
Tumor Cells, Cultured
;
Tyrosine/*metabolism
;
Water/chemistry
5.Trp-Lys-Tyr-Met-Val-Met stimulates phagocytosis via phospho-lipase D-dependent signaling in mouse dendritic cells.
Ha Young LEE ; Hyun Kyu KANG ; Eun Jin JO ; Jung Im KIM ; Youl Nam LEE ; Sang Hwa LEE ; Yeong Min PARK ; Sung Ho RYU ; Jong Young KWAK ; Yoe Sik BAE
Experimental & Molecular Medicine 2004;36(2):135-144
Dendritic cells (DCs) play a key role in activating the immune response against invading pathogens as well as dying cells or tumors. Although the immune response can be initiated by the phagocytic activity by DCs, the molecular mechanism involved in this process has not been fully investigated. Trp-Lys-Tyr-Met-Val-Met-NH2 (WKYMVM) stimulates the activation of phospholipase D (PLD) via Ca2+ increase and protein kinase C activation in mouse DC cell line, DC2.4. WKYMVM stimulates the phagocytic activity, which is inhibited in the presence of N-butanol but not t-butanol in DC2.4 cells. Furthermore, the addition of phosphatidic acid, an enzymatic product of PLD activity, enhanced the phagocytic activity in DC2.4 cells. Since at least two of formyl peptide receptor (FPR) family (FPR1 and FPR2) are expressed in DC2.4 as well as in mouse bone marrow-derived dendritic cells, this study suggests that the activation of FPR family by WKYMVM stimulates the PLD activity resulting in phagocytic activity in DC2.4 cells.
1-Butanol/pharmacology
;
Animals
;
Bone Marrow Cells/cytology/metabolism
;
Calcium Signaling/*drug effects
;
Cell Death/immunology
;
Cell Line
;
Communicable Diseases/immunology
;
Dendritic Cells/immunology/*metabolism
;
Mice
;
Neoplasms/immunology
;
Oligopeptides/*pharmacology
;
Phagocytosis/*drug effects
;
Phosphatidic Acids/pharmacology
;
Phospholipase D/*metabolism
;
Receptors, Formyl Peptide/*metabolism
;
Research Support, Non-U.S. Gov't
;
tert-Butyl Alcohol/pharmacology
6.Der f 2 activates phospholipase D in human T lymphocytes from Dermatophagoides farinae specific allergic individuals: Involvement of protein kinase C-alpha.
Jae Won OH ; Eun Young KIM ; Bon Suk KOO ; Ha Baik LEE ; Ki Sung LEE ; Yong Seok KIM ; Joong Soo HAN
Experimental & Molecular Medicine 2004;36(5):486-492
The major house-dust mite allergen, Der f 2, stimulates the phospholipase D (PLD) in T lymphocytes from Dermatophagoides farinae specific allergic individuals. PLD activity increased more than two-fold in T cells from allergic patients compared with those cells from normal controls with maximal responses within 30 min after exposure of Der f 2. A well-known PLD activator PKC-alpha was found to be translocated to membrane from cytosol in Der f 2-treated T cells from Dermatophagoides farinae specific allergic individuals. Down-regulation of PKC-alpha with phorbol myristate acetate pretreatment for 24 h abolished Der f 2-induced PLD activation. Ro 320432, PKC inhibitor also reduced the effects of Der f 2-induced PLD activation suggesting that PKC-alpha acts as upstream activator of PLD in Der f 2-treated T cells. Taken together, the present data suggest that Der f 2 can stimulate PLD activity through the PKC-alpha activation in T cells from Dermatophagoides farinae allergic individuals
Adolescent
;
Adult
;
Animals
;
Antigens, Dermatophagoides/*immunology
;
Dermatophagoides farinae/*immunology
;
Female
;
Humans
;
Hypersensitivity, Immediate/*enzymology/*immunology
;
Male
;
Phospholipase D/*metabolism
;
Protein Kinase C/antagonists & inhibitors/*physiology
;
Research Support, Non-U.S. Gov't
;
Skin Tests
;
T-Lymphocytes/*enzymology/immunology
;
Tetradecanoylphorbol Acetate/*analogs & derivatives/pharmacology
;
Up-Regulation
7.Differential effects of Fas cross-linking on phospholipase D activation and related lipid metabolism in Fas-resistant A20 cells..
Si Young LIM ; Sung Chang LEE ; In Cheol SHIN ; Joong Soo HAN
Experimental & Molecular Medicine 2002;34(3):201-210
A20 murine lymphoma cells undergoing Fas-mediated apoptosis showed increase in the activity of phospholipase D (PLD), which is involved in proliferative or mitogenic cellular responses. Using A20 cell lines that were resistant to Fas-induced apoptosis, we investigated the differential effects of Fas cross-linking on PLD activity and sphingolipid metabolism. The basal PLD activities in all of the selected three Fas-resistant clones (#5, #8, and #11) were about 2~4 folds higher than that of wild type A20 cells. Among the PLD isoforms, PLD2 expression was increased in all of the selected Fas-resistant clones. The Fas downstream signaling events triggered by Fas cross-linking, including the activations of PLD, phosphatidy-lcholine-specific phospholipase C (PC-PLC), sphingomyelinase (SMase), the increase in diacylglycerol (DAG) and protein phosphorylation levels, and the translocation of protein kinase C to membrane were not changed in both of Fas-resistant clone #5 and #8. In contrast, Fas cross-linking stimulated the activity of PLD, PC-PLC, and SMase, translocation of PKC, and protein phosphorylation in Fas-resistant clone #11, similar to that of wild type cells. We also found that clone #11 had a different Fas sequence encoding Fas B which has been known to inhibit Fas-induced apoptosis. These findings suggest that increased PLD2 expression resulting in increased basal PLD activity and the blockade of Fas downstream signaling cascades may be involved to limit apoptosis induced by Fas cross-linking.
Animals
;
Antibodies, Monoclonal/immunology/pharmacology
;
Antigens, CD95/immunology/*metabolism
;
Base Sequence
;
Carrier Proteins/metabolism
;
Clone Cells
;
Cross-Linking Reagents/pharmacology
;
Diglycerides/metabolism
;
Enzyme Activation/drug effects
;
Lipids/*metabolism
;
Mice
;
Molecular Sequence Data
;
Phospholipase D/*metabolism
;
Phosphorylation/drug effects
;
Protein Kinase C/metabolism
;
*Signal Transduction/drug effects
;
Sphingomyelin Phosphodiesterase/metabolism
;
Tumor Cells, Cultured
8.Changes of phospholipase D activity in TNF-alpha and anti-Fas/Apo1 monoclonal antibody induced apoptosis in HL-60 and A20 cells.
Jin Ho KANG ; In Cheol SHIN ; Joong Soo HAN
Experimental & Molecular Medicine 1998;30(1):21-27
The changes of phospholipase D (PLD) activity were investigated during the courses of apoptotic process induced by tumor necrosis factor (TNF)-alpha or anti-Fas/Apo1 antibody in human premyelocyte HL-60 and murine B cell lymphoma A20 cells. The treatment of recombinant TNF-alpha to HL-60 cells resulted in the increased PLD activity as determined by the phosphatidylethanol formation in the presence of 1% ethanol. The enhancement of PLD activity was also observed in the anti-Fas/Apo1 monoclonal antibody-treated A20 cells. However, the activity of PLD was maximized when HL-60 and A20 cells were treated with either TNF-alpha or anti-Fas/Apo1 monoclonal antibody for 6 h. Both TNF-alpha and anti-Fas/Apo1 monoclonal antibody increased PLD activity in a dose-dependent manner up to 200 U/ml and 200 ng/ml, respectively. When the intracellular activity of protein kinase C (PKC) was interrupted by treatment of calphostin-C, both the PLD activation and the apoptosis induced by TNF-alpha and anti-Fas/Apo1 monoclonal antibody appeared to be inhibited. Since PKC is reported to activate PLD, the results indicate that the intracellular signaling cascade via PLD may play a role in the induction of apoptosis induced by TNF-alpha and anti-Fas/Apo1 monoclonal antibody.
Animal
;
Antibodies, Monoclonal/pharmacology
;
Antigens, CD95/metabolism*
;
Antigens, CD95/immunology
;
Apoptosis*
;
DNA Fragmentation
;
Dose-Response Relationship, Drug
;
Enzyme Activation
;
HL-60 Cells
;
Human
;
Leukemia, Promyelocytic, Acute
;
Lymphoma, B-Cell
;
Mice
;
Naphthalenes/pharmacology
;
Phospholipase D/metabolism*
;
Protein Kinase C/antagonists & inhibitors
;
Receptors, Tumor Necrosis Factor/metabolism*
;
Signal Transduction
;
Tumor Necrosis Factor/pharmacology*