1.Phosphatidylinositol phosphates directly bind to neurofilament light chain (NF-L) for the regulation of NF-L self assembly.
Sung Kuk KIM ; Ho KIM ; Yong Ryoul YANG ; Pann Ghill SUH ; Jong Soo CHANG
Experimental & Molecular Medicine 2011;43(3):153-160
Phosphatidylinositol phosphates (PtdInsPs) are ubiquitous membrane phospholipids that play diverse roles in cell growth and differentiation. To clarify the regulation mechanism acting on neurofilament light chain (NF-L) self assembly, we examined the effects of various PtdInsPs on this process. We found that PtdInsPs, including PI(4,5)P2, directly bind to the positively charged Arg54 of murine NF-L, and this binding promotes NF-L self assembly in vitro. Mutant NF-L (R53A/R54A) proteins lacking binding affinity to PtdInsPs did not have the same effect, but the mutant NF-L proteins showed greater self assembly than the wild-type in the absence of any PtdInsP. These results collectively suggest that Arg54 plays a pivotal role in NF-L self assembly by binding with PtdInsPs.
Animals
;
Fluorescent Antibody Technique
;
Mice
;
Mutation/genetics
;
Neurofilament Proteins/genetics/*metabolism
;
Phosphatidylinositol Phosphates/*metabolism
;
Phospholipase C gamma/metabolism
;
*Protein Multimerization
2.Effects of theanine on monoamine neurotransmitters and related genes in cerebral ischemia-reperfusion injury rats.
Jing YAO ; Xin-nan SHEN ; Hui SHEN ; Min WU
Chinese Journal of Preventive Medicine 2012;46(7):635-639
OBJECTIVETo study the effects of theanine on dopamine (DA), 5-hydroxy tryptamine (5-TH) and glutamate receptor 2 (GluR2) mRNA, phospholipase-γ1 (PLC-γ1) mRNA in cerebral ischemia-reperfusion injury rats and explore the mechanism of protective effects of theanine on the induced brain injury by ischemia-reperfusion in rats.
METHODSAccording to random number table, a total of 56 sprague-dawley rats in SPF grade about six-week old and 100 - 120 grams weighting were divided into five groups according to the body weight levels: model group (n = 12), sham-operation group (n = 8), low theanine group (10 mg/kg), middle theanine group (30 mg/kg) and high theanine group (90 mg/kg). There were 12 rats in each of the theanine group. The rats in model group and sham-operation groups were given distilled water, and the rats in theanine groups were given corresponding theanine solution intragastrically for fifteen days. Then the cerebral ischemia-reperfusion injury was established by middle cerebral artery occlusion (MCAO). The score of neurological behavior was evaluated at the 3rd and 24th hours after reperfusion. Rats were sacrificed at 24 hours after reperfusion, the concentrations of DA, 5-HT and theanine in rats brain following ischemia-reperfusion were determined. At the same time, we determined the levels of reactive oxygen species (ROS) and activities of catalase (CAT) in mitochondria of brain. The expressions of GluR2 mRNA and PLC-γ1 mRNA in rat brain were examined by reverse transcription polymerase chain reaction (RT-PCR) technique.
RESULTSThe score of neurological behavior of rats in model group, theanine-low, middle, high dose groups at the 3rd hour was 6.000 ± 0.926, 4.100 ± 0.738, 3.444 ± 0.726 and 2.250 ± 0.886 respectively (F = 29.70, P < 0.01), and the score at the 24th hour in these groups was 6.625 ± 0.916, 5.000 ± 0.817, 3.667 ± 0.707 and 2.625 ± 0.916 respectively(F = 34.68, P < 0.01). The concentration of DA in model group, theanine-low, middle, high dose groups and sham-operation group was (10.26 ± 1.12), (12.48 ± 1.09), (14.55 ± 0.94), (15.97 ± 0.92) and (11.98 ± 0.63) µg/g respectively (F = 43.76, P < 0.01). The concentration of 5-HT in these groups was (1.091 ± 0.160), (0.818 ± 0.101), (0.571 ± 0.050), (0.453 ± 0.111) and (0.863 ± 0.063) µg/g respectively (F = 48.68, P < 0.01). The level of ROS was (3.072 ± 0.503), (1.331 ± 0.268), (1.295 ± 0.061), (0.804 ± 0.200) and (2.158 ± 0.218) U×min⁻¹×mg⁻¹ (F = 80.82, P < 0.01) respectively and the activities of CAT in these groups were (4.880 ± 1.121), (8.405 ± 1.356), (9.535 ± 2.511), (15.090 ± 4.054) and (21.260 ± 6.054) U/g respectively (F = 28.58, P < 0.01). The expressions of GluR2 mRNA were 0.842 ± 0.020, 1.063 ± 0.100, 1.170 ± 0.152, 1.254 ± 0.131 and 1.012 ± 0.056 respectively (F = 9.23, P < 0.01). The expressions of PLC-γ1 mRNA in these groups were 0.737 ± 0.090, 0.887 ± 0.045, 0.963 ± 0.025, 0.991 ± 0.049 and 0.867 ± 0.079 respectively(F = 10.24, P < 0.01).
CONCLUSIONTheanine has a protective effect on the induced brain injury by ischemia-reperfusion in rats, which might be associated with its interaction with monoamine neurotransmitters and up-regulating the expressions of GluR2 mRNA and PLC-γ1 mRNA.
Animals ; Biogenic Monoamines ; metabolism ; Brain ; drug effects ; metabolism ; Brain Ischemia ; genetics ; metabolism ; Glutamates ; pharmacology ; Male ; Neurotransmitter Agents ; pharmacology ; Phospholipase C gamma ; genetics ; metabolism ; RNA, Messenger ; genetics ; Rats ; Rats, Sprague-Dawley ; Receptors, AMPA ; genetics ; metabolism ; Reperfusion Injury ; genetics ; metabolism
3.Phosphorylation of glycogen synthase kinase-3beta at serine-9 by phospholipase Cgamma1 through protein kinase C in rat 3Y1 fibroblasts.
Soon Young SHIN ; Se Chang YOON ; Young Ho KIM ; Yong Sik KIM ; Young Han LEE
Experimental & Molecular Medicine 2002;34(6):444-450
Phospholipase Cgamma1 (PLCgamma1) plays an important role in controlling cellular proliferation and differentiation. PLCgamma1 is overexpressed in some tumors, and its overexpression induces solid tumors in nude mice. However, the regulatory mechanisms underlying PLCgamma1-induced cell proliferation are not fully understood. Here we show that overexpression of PLCgamma1 highly phosphorylated glycogen synthase kinase-3beta (GSK-3beta) at serine-9 in 3Y1 fibroblasts. Inhibition of protein kinase C (PKC)s with GF109203X abrogated GSK-3beta phosphorylation by PLCgamma1. We also found that steady-state level of cyclin D1 protein, but not cyclin D1 mRNA, was highly elevated in response to serum stimulation in PLCgamma1-transfected cells as compared with vector-transfected cells. Since GSK-3beta is involved in cyclin D1 proteolysis in response to mitogenic stimulation, PLCgamma1-mediated GSK-3beta phosphorylation may function as a regulation of cyclin D1 accumulation in PLCgamma1-overexpressing cells.
Animals
;
Cyclin D1/metabolism
;
Epidermal Growth Factor/pharmacology
;
Fibroblasts
;
Gene Expression
;
Glycogen Synthase Kinase 3/chemistry/*metabolism
;
Mitogens/pharmacology
;
Phospholipase C/genetics/*metabolism
;
Phosphorylation/drug effects
;
Phosphoserine/*metabolism
;
Protein Kinase C/antagonists & inhibitors/*metabolism
;
Rats
;
Signal Transduction
4.Overexpression of PEMT2 inhibits the phosphorylation and translocation of PLC gamma 1.
Ya-li LI ; Yan-hua SHAO ; Zhi-li LIU ; Quan XIA ; Ke-li MA
Chinese Journal of Hepatology 2006;14(7):514-516
OBJECTIVESTo explore the mechanism of CBRH-7919 cell proliferation inhibition by transfecting phosphatidylethanolamine N-methyltransferase 2 gene (PEMT2).
METHODSThe effects of PEMT2 transfection on phosphorylation and translocation from cytosol to plasma membrane of PLC gamma 1 in cells were studied using SDS-PAGE and Western blot techniques. The phosphorylation and activity of c-Met were determined.
RESULTSAfter transfection of pemt2, the PLC gamma 1 and phosphorylated PLC gamma 1 conjugated with plasma membrane were decreased by 45% and 27% of that of control cells respectively, and the phosphorylated c-Met was decreased to 32% of that of control cells.
CONCLUSIONTransfection of phosphatidylethanolamine N-methyltransferase 2 gene can inhibit the phosphorylation and translocation from cytosol to plasma membrane of PLC gamma 1 in cells. At the same time, the autophosphorylation of c-Met was decreased, which suggests that transfection of phosphatidylethanolamine N-methyltransferase 2 gene can downregulate the c-Met/PLC gamma 1 signaling pathway in CBRH-7919 cells.
Animals ; Cell Line, Tumor ; Cell Movement ; Cell Proliferation ; Liver Neoplasms, Experimental ; Phosphatidylethanolamine N-Methyltransferase ; genetics ; metabolism ; Phospholipase C gamma ; genetics ; metabolism ; Phosphorylation ; Proto-Oncogene Proteins c-met ; metabolism ; Rats ; Transfection
5.The promoting research of phospholipase C epsilon-1 on nasal Th2 cell polarization.
Bing ZHANG ; Tao LIU ; Huarong ZHOU
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2014;28(17):1363-1366
Phospholipase C epsilon-1 (PLCE1) is a phospholipase C isoenzyme encoded by PLCE1 gene, and has more complicated molecular structure and function than other subtypes. Phospholipase C epsilon-1 is accepted the dual regulation by the upstream G proteins and GTP enzymes of Ras family. The downstream signal of PLCE1 is not only cause the Ca2+ flow and protein kinase C(PKC) activation, but also can be used as the GTP enzyme guanylic acid conversion factor of Ras superfamily, so as to regulate the expression of certain genes, adjusting cell growth and differentiation processes. PLCE1 plays a very important role in the signal transduction in the regulation of cell growth, differentiation, proliferation and apoptosis. Previous studies showed that phospholipase C epsilon-1 played an important role in the development of malignant tumors (especially the digestive tumors), heart disease, nephrotic syndrome and other diseases, but there are some questions about the mechanisms of PLCE1 involved in allergic rhinitis, this article will make an overview about PLCE1 promotes allergic rhinitis CD4+ T cells differentiate to Th2 cells by PKC-NF-κB pathway and Ras-MAPK pathway.
Apoptosis
;
Calcium
;
metabolism
;
Cell Cycle
;
Cell Differentiation
;
physiology
;
Cell Proliferation
;
physiology
;
Enzyme Activation
;
Gene Expression
;
Humans
;
NF-kappa B
;
Phosphoinositide Phospholipase C
;
genetics
;
physiology
;
Protein Kinase C
;
metabolism
;
Rhinitis, Allergic
;
enzymology
;
Signal Transduction
;
Th2 Cells
;
cytology
6.Role of PLC-PIP2 and cAMP-PKA signal pathways in radiation-induced immune-suppressing effect.
Juan Cong DONG ; Guang Hui CHENG ; Yu Xing SHAN ; Ning WU ; Ming Long SHAO ; Peng Wu LI ; Shun Zi JIN
Biomedical and Environmental Sciences 2014;27(1):27-34
OBJECTIVEThe purpose of the present study was to observe the changes in CD4+CD25+Nrp1+Treg cells after irradiation with different doses and explore the possible molecular mechanisms involved.
METHODSICR mice and mouse lymphoma cell line (EL-4 cells) was used. The expressions of CD4, CD25, Nrp1, calcineurin and PKC-α were detected by flow cytometry. The expressions of TGF-β1, IL-10, PKA and cAMP were estimated with ELISA.
RESULTSAt 12 h after irradiation, the expression of Nrp1 increased significantly in 4.0 Gy group, compared with sham-irradiation group (P<0.05) in the spleen and thymus, respectively, when ICR mice received whole-body irradiation (WBI). Meanwhile the synthesis of Interleukin 10 (IL-10) and transforming growth factor-β1 (TGF-β1) increased significantly after high dose irradiation (HDR) (> or = 1.0 Gy). In addition, the expression of cAMP and PKA protein increased, while PKC-α, calcineurin decreased at 12h in thymus cells after 4.0 Gy X-irradiation. While TGF-β1 was clearly inhibited when the PLC-PIP2 signal pathway was stimulated or the cAMP-PKA signal pathway was blocked after 4.0 Gy X-irradiation, this did not limit the up-regulation of CD4+CD25+Nrp1+Treg cells after ionizing radiation.
CONCLUSIONThese results indicated that HDR might induce CD4+CD25+Nrp1+Treg cells production and stimulate TGF-β1 secretion by regulating signal molecules in mice.
Animals ; Calcineurin ; genetics ; metabolism ; Cyclic AMP ; metabolism ; Dose-Response Relationship, Radiation ; Female ; Gene Expression Regulation ; radiation effects ; Immunosuppression ; Interleukin-10 ; genetics ; metabolism ; Lymphocyte Subsets ; physiology ; Male ; Mice ; Neuropilin-1 ; genetics ; metabolism ; Phosphoinositide Phospholipase C ; genetics ; metabolism ; Protein Kinases ; genetics ; metabolism ; Signal Transduction ; Transforming Growth Factor beta ; genetics ; metabolism ; Whole-Body Irradiation ; adverse effects
7.Recent advances on relationship between phospholipase C epsilon-1 gene and tumor.
Xiao-bin CUI ; Yun-zhao CHEN ; Feng LI
Chinese Journal of Pathology 2012;41(3):213-216
Animals
;
Carcinoma, Squamous Cell
;
genetics
;
Colorectal Neoplasms
;
genetics
;
metabolism
;
Enzyme Activation
;
Esophageal Neoplasms
;
genetics
;
Genome-Wide Association Study
;
Head and Neck Neoplasms
;
genetics
;
Humans
;
Neoplasms
;
chemically induced
;
enzymology
;
genetics
;
Phosphoinositide Phospholipase C
;
chemistry
;
genetics
;
metabolism
;
physiology
;
Signal Transduction
;
Skin Neoplasms
;
chemically induced
;
enzymology
;
Stomach Neoplasms
;
genetics
;
Urinary Bladder Neoplasms
;
metabolism
;
pathology
;
ras Proteins
;
metabolism
8.Preeclampsia serum-induced collagen I expression and intracellular calcium levels in arterial smooth muscle cells are mediated by the PLC-gamma1 pathway.
Rongzhen JIANG ; Yincheng TENG ; Yajuan HUANG ; Jinghong GU ; Li MA ; Ming LI ; Yuedi ZHOU
Experimental & Molecular Medicine 2014;46(9):e115-
In women with preeclampsia (PE), endothelial cell (EC) dysfunction can lead to altered secretion of paracrine factors that induce peripheral vasoconstriction and proteinuria. This study examined the hypothesis that PE sera may directly or indirectly, through human umbilical vein ECs (HUVECs), stimulate phospholipase C-gamma1-1,4,5-trisphosphate (PLC-gamma1-IP3) signaling, thereby increasing protein kinase C-alpha (PKC-alpha) activity, collagen I expression and intracellular Ca2+ concentrations ([Ca2+]i) in human umbilical artery smooth muscle cells (HUASMCs). HUASMCs and HUVECs were cocultured with normal or PE sera before PLC-gamma1 silencing. Increased PLC-gamma1 and IP3 receptor (IP3R) phosphorylation was observed in cocultured HUASMCs stimulated with PE sera (P<0.05). In addition, PE serum significantly increased HUASMC viability and reduced their apoptosis (P<0.05); these effects were abrogated with PLC-gamma1 silencing. Compared with normal sera, PE sera increased [Ca2+]i in cocultured HUASMCs (P<0.05), which was inhibited by PLC-gamma1 and IP3R silencing. Finally, PE sera-induced PKC-alpha activity and collagen I expression was inhibited by PLC-gamma1 small interfering RNA (siRNA) (P<0.05). These results suggest that vasoactive substances in the PE serum may induce deposition in the extracellular matrix through the activation of PLC-gamma1, which may in turn result in thickening and hardening of the placental vascular wall, placental blood supply shortage, fetal hypoxia-ischemia and intrauterine growth retardation or intrauterine fetal death. PE sera increased [Ca2+]i and induced PKC-alpha activation and collagen I expression in cocultured HUASMCs via the PLC-gamma1 pathway.
Adult
;
Apoptosis
;
Calcium/*metabolism
;
Cell Line
;
Cell Survival
;
Cells, Cultured
;
Coculture Techniques
;
Collagen Type I/analysis/*metabolism
;
Female
;
Human Umbilical Vein Endothelial Cells
;
Humans
;
Muscle, Smooth, Vascular/*cytology/metabolism
;
Phospholipase C gamma/genetics/*metabolism
;
Pre-Eclampsia/*blood/*metabolism/pathology
;
Pregnancy
;
Protein Kinase C-alpha/metabolism
;
RNA Interference
;
*Signal Transduction
;
Young Adult
9.Syringaresinol causes vasorelaxation by elevating nitric oxide production through the phosphorylation and dimerization of endothelial nitric oxide synthase.
Byung Hee CHUNG ; Sookon KIM ; Jong Dai KIM ; Jung Joon LEE ; Yi Yong BAEK ; Dooil JEOUNG ; Hansoo LEE ; Jongseon CHOE ; Kwon Soo HA ; Moo Ho WON ; Young Guen KWON ; Young Myeong KIM
Experimental & Molecular Medicine 2012;44(3):191-201
Nitric oxide (NO) produced by endothelial NO synthase (eNOS) plays an important role in vascular functions, including vasorelaxation. We here investigated the pharmacological effect of the natural product syringaresinol on vascular relaxation and eNOS-mediated NO production as well as its underlying biochemical mechanism in endothelial cells. Treatment of aortic rings from wild type, but not eNOS-/- mice, with syringaresinol induced endothelium-dependent relaxation, which was abolished by addition of the NOS inhibitor NG-monomethyl-L-arginine. Treatment of human endothelial cells and mouse aortic rings with syringaresinol increased NO production, which was correlated with eNOS phosphorylation via the activation of Akt and AMP kinase (AMPK) as well as elevation of intracellular Ca2+ levels. A phospholipase C (PLC) inhibitor blocked the increases in intracellular Ca2+ levels, AMPK-dependent eNOS phosphorylation, and NO production, but not Akt activation, in syringaresinol-treated endothelial cells. Syringaresinol-induced AMPK activation was inhibited by co-treatment with PLC inhibitor, Ca2+ chelator, calmodulin antagonist, and CaMKKbeta siRNA. This compound also increased eNOS dimerization, which was inhibited by a PLC inhibitor and a Ca2+-chelator. The chemicals that inhibit eNOS phosphorylation and dimerization attenuated vasorelaxation and cGMP production. These results suggest that syringaresinol induces vasorelaxation by enhancing NO production in endothelial cells via two distinct mechanisms, phosphatidylinositol 3-kinase/Akt- and PLC/Ca2+/CaMKKbeta-dependent eNOS phosphorylation and Ca2+-dependent eNOS dimerization.
Animals
;
Aorta/*drug effects/physiology
;
Enzyme Activation/drug effects
;
Furans/*pharmacology
;
Gene Deletion
;
Human Umbilical Vein Endothelial Cells/drug effects/metabolism
;
Humans
;
Lignans/*pharmacology
;
Mice
;
Mice, Inbred C57BL
;
Nitric Oxide/metabolism
;
Nitric Oxide Synthase Type III/genetics/*metabolism
;
Phosphatidylinositol 3-Kinases/metabolism
;
Phosphoinositide Phospholipase C/metabolism
;
Phosphorylation/drug effects
;
Protein Multimerization/*drug effects
;
Proto-Oncogene Proteins c-akt/metabolism
;
Vasodilation/*drug effects
10.A double point mutation in PCL-gamma1 (Y509A/F510A) enhances Y783 phosphorylation and inositol phospholipid-hydrolyzing activity upon EGF stimulation.
Sang Hee CHUNG ; Sung Kuk KIM ; Jung Kuk KIM ; Yong Ryoul YANG ; Pann Ghill SUH ; Jong Soo CHANG
Experimental & Molecular Medicine 2010;42(3):216-222
Growth factor stimulation induces Y783 phosphorylation of phosphoinositide-specific PLC-gamma1, and the subsequent activation of this enzyme in a cellular signaling cascade. Previously, we showed that a double point mutation, Y509A/F510A, of PLC-gamma1, abolished interactions with translational elongation factor 1-alpha. Here, we report that the Y509A/F510A mutant PLC-gamma1 displayed extremely high levels of Y783 phosphorylation and enhanced catalytic activity, compared to wild-type PLC-gamma1, upon treatment of COS7 cells with EGF. In quiescent COS7 cells, the Y509A/F510A mutant PLC-gamma1 exhibited a constitutive hydrolytic activity, whereas the wild-type counterpart displayed a basal level of activity. Upon treatment of COS7 cells with EGF, the Y783F mutation in Y509A/F510A PLC-gamma1 (Y509A/F510A/Y783F triple mutant) cells also led to an enhanced catalytic activity, whereas Y783F mutation alone displayed a basal level of activity. Our results collectively suggest that the Y509A/F510A mutant is more susceptible to receptor tyrosine kinase-induced Y783 phosphorylation than is wild-type PLC-gamma1, but no longer requires Y783 phosphorylation step for the Y509A/F510A mutant PLC-gamma1 activation in vivo.
Amino Acid Substitution/drug effects/*genetics
;
Animals
;
COS Cells
;
Cercopithecus aethiops
;
Enzyme Activation/drug effects
;
Epidermal Growth Factor/*pharmacology
;
Hydrolysis/drug effects
;
Mutant Proteins/metabolism
;
Phosphatidylinositols/*metabolism
;
Phospholipase C gamma/*genetics/metabolism
;
Phosphorylation/drug effects
;
Phosphotyrosine/*metabolism
;
Point Mutation/*genetics
;
Rats