1.Effect of sildenafil citrate on interleukin-1beta-induced nitric oxide synthesis and iNOS expression in SW982 cells.
Kyung Ok KIM ; Shin Young PARK ; Chang Woo HAN ; Hyun Kee CHUNG ; Dae Hyun RYU ; Joong Soo HAN
Experimental & Molecular Medicine 2008;40(3):286-293
The purpose of this study was to identify the effect of sildenafil citrate on IL-1 beta induced nitric oxide (NO) synthesis and iNOS expression in human synovial sarcoma SW982 cells. IL-1 beta stimulated the cells to generate NO in both dose- and time-dependent manners. The IL-1 beta -induced NO synthesis was inhibited by guanylate cyclase (GC) inhibitor, LY83583. When the cells were treated with 8-bromo-cGMP, a hydrolyzable analog of cGMP, NO synthesis was increased upto 5-fold without IL-1 beta treatment suggesting that cGMP is an essential component for increasing the NO synthesis. Synoviocytes and chondrocytes contain strong cGMP phosphodiesterase (PDE) activity, which has biochemical features of PDE5. When SW982 cells were pretreated with sildenafil citrate (Viagra), a PDE5 specific inhibitor, sildenafil citrate significantly inhibited IL-1 beta -induced NO synthesis and iNOS expressions. From this result, we noticed that PDE5 activity is required for IL-1 beta -induced NO synthesis and iNOS expressions in human synovial sarcoma cells, and sildenafil citrate may be able to suppress an inflammatory reaction of synovium through inhibition of NO synthesis and iNOS expression by cytokines.
Anti-Inflammatory Agents/immunology/pharmacology
;
Cell Line, Tumor
;
Cyclic GMP/analogs & derivatives/immunology/metabolism
;
Cyclic Nucleotide Phosphodiesterases, Type 2/antagonists & inhibitors/metabolism
;
Humans
;
Interleukin-1beta/*metabolism
;
Male
;
Nitric Oxide/*biosynthesis/genetics/immunology
;
Nitric Oxide Synthase Type II/*biosynthesis/genetics/immunology
;
Phosphodiesterase Inhibitors/immunology/*pharmacology
;
Piperazines/immunology/*pharmacology
;
Purines/immunology/pharmacology
;
Signal Transduction/drug effects/genetics/immunology
;
Sulfones/immunology/*pharmacology
;
Synovial Membrane/enzymology/immunology
2.Role of mucosal mast cells in visceral hypersensitivity in a rat model of irritable bowel syndrome.
Jun Ho LA ; Tae Wan KIM ; Tae Sik SUNG ; Hyun Ju KIM ; Jeom Yong KIM ; Il Suk YANG
Journal of Veterinary Science 2004;5(4):319-324
The involvement of mucosal mast cells (MMC) in the pathophysiology of irritable bowel syndrome (IBS) is still controversial. We aimed to re-evaluate the role of MMC in visceral hypersensitivity associated with IBS using a rat IBS model that develops the IBS symptom after a subsidence of acetic acid-induced colitis. No significant difference in the number of MMC was observed between normal rat colon and IBS rat colon. (61.7 +/-2.9/mm 2 in normal vs. 88.7 +/-13.3/mm 2 in IBS, p >0.29). However, the degranulation rate of MMC was significantly higher in IBS rat colon (49.5 +/-2.4% in normal vs. 68.8 +/-3.4% in IBS, p >0.05). Pretreatment of a mast cell stabilizer, doxantrazole (5 mg/kg, i.p.), reduced the degranulation rate of MMC and significantly attenuated visceral hypersensitivity to rectal distension in IBS rat, whereas it had no effect on the visceral sensory responses in normal rat. These results suggest that, although the number of MMC is not significantly changed in IBS rat colon, the higher degranulation rate of MMC is responsible for visceral hypersensitivity in this model IBS.
Acetic Acid/toxicity
;
Animals
;
Cell Count
;
Colitis/chemically induced/*pathology
;
Hypersensitivity/*pathology
;
Image Processing, Computer-Assisted
;
Intestinal Mucosa/*pathology
;
Irritable Bowel Syndrome/*pathology
;
Male
;
Mast Cells/drug effects/*pathology
;
Models, Theoretical
;
Phosphodiesterase Inhibitors/pharmacology
;
Rats
;
Rats, Sprague-Dawley
;
Thioxanthenes/pharmacology
;
Viscera/immunology
;
Xanthones/pharmacology
3.Pentoxifylline inhibits liver fibrosis via hedgehog signaling pathway.
Hui LI ; Juan HUA ; Chun-Xia GUO ; Wei-Xian WANG ; Bao-Ju WANG ; Dong-Liang YANG ; Ping WEI ; Yin-Ping LU
Journal of Huazhong University of Science and Technology (Medical Sciences) 2016;36(3):372-376
Infection of schistosomiasis japonica may eventually lead to liver fibrosis, and no effective antifibrotic therapies are available but liver transplantation. Hedgehog (HH) signaling pathway has been involved in the process and is a promising target for treating liver fibrosis. This study aimed to explore the effects of pentoxifylline (PTX) on liver fibrosis induced by schistosoma japonicum infection by inhibiting the HH signaling pathway. Phorbol12-myristate13-acetate (PMA) was used to induce human acute mononuclear leukemia cells THP-1 to differentiate into macrophages. The THP-1-derived macrophages were stimulated by soluble egg antigen (SEA), and the culture supernatants were collected for detection of activation of macrophages. Cell Counting Kit-8 (CCK-8) was used to detect the cytotoxicity of the culture supernatant and PTX on the LX-2 cells. The LX-2 cells were administered with activated culture supernatant from macrophages and(or) PTX to detect the transforming growth factor-β gene expression. The mRNA expression of shh and gli-1, key parts in HH signaling pathway, was detected. The mRNA expression of shh and gli-1 was increased in LX-2 cells treated with activated macrophages-derived culture supernatant, suggesting HH signaling pathway may play a key role in the activation process of hepatic stellate cells (HSCs). The expression of these genes decreased in LX-2 cells co-cultured with both activated macrophages-derived culture supernatant and PTX, indicating PTX could suppress the activation process of HSCs. In conclusion, these data provide evidence that PTX prevents liver fibrogenesis in vitro by the suppression of HH signaling pathway.
Animals
;
Antigens, Helminth
;
isolation & purification
;
pharmacology
;
Cell Culture Techniques
;
Cell Differentiation
;
drug effects
;
Cell Line
;
Culture Media, Conditioned
;
chemistry
;
pharmacology
;
Gene Expression Regulation
;
Hedgehog Proteins
;
agonists
;
antagonists & inhibitors
;
genetics
;
immunology
;
Hepatic Stellate Cells
;
cytology
;
drug effects
;
metabolism
;
Humans
;
Liver Cirrhosis
;
metabolism
;
parasitology
;
prevention & control
;
Macrophage Activation
;
drug effects
;
Macrophages
;
cytology
;
drug effects
;
immunology
;
Models, Biological
;
Monocytes
;
cytology
;
drug effects
;
metabolism
;
Pentoxifylline
;
pharmacology
;
Phosphodiesterase Inhibitors
;
pharmacology
;
RNA, Messenger
;
genetics
;
immunology
;
Schistosoma japonicum
;
chemistry
;
Signal Transduction
;
Tetradecanoylphorbol Acetate
;
pharmacology
;
Zinc Finger Protein GLI1
;
genetics
;
immunology
;
Zygote
;
chemistry