1.Relationship between lysophosphatide acid acyltransferase beta and tumor - review.
Journal of Experimental Hematology 2008;16(4):975-978
Phosphatide acid (PA) is a kind of multifunctional bioactive phospholipid. It has been proved that PA produced by lysophosphatide acid acyltransferase (LPAATbeta) was involved in several signalling pathways in tumor cells, leading to the proliferation, apoptosis, migration, invasion, respiratory burst, expression and release of cytokine form tumor cells. The fact that expression of LPAATbeta was higher in tumor tissues than in their homologous normal tissues, and that antitumor effect of inhibitng LPAATbeta on solid tumor and hematological malignancy suggested that the targeting LPAATbeta would be a promising method of antitumor treatment. In this paper, the relevant basic and preclinical researches of LPAATbeta on antitumor treatment were summarized.
Acyltransferases
;
antagonists & inhibitors
;
genetics
;
metabolism
;
Humans
;
Neoplasms
;
drug therapy
;
enzymology
;
Phosphatidic Acids
;
metabolism
;
physiology
2.Phospholipase D activates HIF-1-VEGF pathway via phosphatidic acid.
Songyi HAN ; Jeongsoon HUH ; Wooseong KIM ; Seongkeun JEONG ; Do Sik MIN ; Yunjin JUNG
Experimental & Molecular Medicine 2014;46(12):e126-
Growth factor-stimulated phospholipase D (PLD) catalyzes the hydrolysis of phosphatidylcholine (PC), generating phosphatidic acid (PA) which may act as a second messenger during cell proliferation and survival. Therefore, PLD is believed to play an important role in tumorigenesis. In this study, a potential mechanism for PLD-mediated tumorigenesis was explored. Ectopic expression of PLD1 or PLD2 in human glioma U87 cells increased the expression of hypoxia-inducible factor-1alpha (HIF-1alpha) protein. PLD-induced HIF-1 activation led to the secretion of vascular endothelial growth factor (VEGF), a HIF-1 target gene involved in tumorigenesis. PLD induction of HIF-1alpha was significantly attenuated by 1-butanol which blocks PA production by PLD, and PA per se was able to elevate HIF-1alpha protein level. Inhibition of mTOR, a PA-responsive kinase, reduced the levels of HIF-1alpha and VEGF in PLD-overexpressed cells. Epidermal growth factor activated PLD and increased the levels of HIF-1alpha and VEGF in U87 cells. A specific PLD inhibitor abolished expression of HIF-1alpha and secretion of VEGF. PLD may utilize HIF-1-VEGF pathway for PLD-mediated tumor cell proliferation and survival.
Cell Line, Tumor
;
Epidermal Growth Factor/metabolism
;
Gene Expression Regulation, Neoplastic
;
Glioma/genetics/*metabolism
;
Humans
;
Hypoxia-Inducible Factor 1, alpha Subunit/genetics/metabolism
;
Phosphatidic Acids/*metabolism
;
Phospholipase D/genetics/*metabolism
;
*Signal Transduction
;
Transfection
;
Vascular Endothelial Growth Factor A/*metabolism
3.STAT3 is involved in phosphatidic acid-induced Bcl-2 expression in HeLa cells.
Hye Jin CHOI ; Jung Han LEE ; Shin Young PARK ; Ju Hwan CHO ; Joong Soo HAN
Experimental & Molecular Medicine 2009;41(2):94-101
Phosphatidic acid (PA), the product of a PLD-mediated reaction, is a lipid second messenger that participates in various intracellular signaling events and is known to regulate a growing list of signaling proteins. We found that Bcl-2 was upregulated by PA treatment in HeLa cells. However, how PA upregulates Bcl-2 expression has not yet been studied. In this study, we tried to discover the mechanisms of Bcl-2 up-regulation by PA treatment in HeLa cells. Treatment with PA resulted in significantly increased expression of Bcl-2 in HeLa cells. Moreover, PA-induced Bcl-2 expression was blocked by mepacrine, an inhibitor of PLA2, but not by propranolol, an inhibitor of PA phospholyhydrolase (PAP). Treatment of 1,2-dipalmitoryl-sn-glycero-3-phosphate (DPPA) also increased Bcl-2 expression. These results indicate that Bcl-2 expression is mediated by lysophosphatidic acid (LPA), not by arachidonic acid (AA). Thereafter, we used MEK1/2 inhibitor, PD98059 to investigate the relationship between ERK1/2 MAPK and PA-induced Bcl-2 expression. PA-induced Bcl-2 expression was decreased when ERK1/2 was inhibited by PD98059. The transcription factor such as STAT3 which is controlled by ERK1/2 MAPK was increased along with Bcl-2 expression when the cells were treated with PA. Furthermore, STAT3 siRNA treatments inhibited PA-induced Bcl-2 expression, suggesting that STAT3 (Ser727) is involved in PA-induced Bcl-2 expression. Taken together, these findings indicate that PA acts as an important mediator for increasing Bcl-2 expression through STAT3 (Ser727) activation via the ERK1/2 MAPK pathway.
Enzyme Inhibitors/pharmacology
;
Gene Expression Regulation, Neoplastic
;
Hela Cells
;
Humans
;
Mitogen-Activated Protein Kinase Kinases/genetics/metabolism
;
Phosphatidic Acids/*genetics/metabolism
;
Propranolol/pharmacology
;
Proto-Oncogene Proteins c-bcl-2/*genetics/metabolism
;
Quinacrine/pharmacology
;
RNA, Small Interfering/genetics
;
STAT3 Transcription Factor/*genetics/metabolism
4.Trp-Lys-Tyr-Met-Val-Met stimulates phagocytosis via phospho-lipase D-dependent signaling in mouse dendritic cells.
Ha Young LEE ; Hyun Kyu KANG ; Eun Jin JO ; Jung Im KIM ; Youl Nam LEE ; Sang Hwa LEE ; Yeong Min PARK ; Sung Ho RYU ; Jong Young KWAK ; Yoe Sik BAE
Experimental & Molecular Medicine 2004;36(2):135-144
Dendritic cells (DCs) play a key role in activating the immune response against invading pathogens as well as dying cells or tumors. Although the immune response can be initiated by the phagocytic activity by DCs, the molecular mechanism involved in this process has not been fully investigated. Trp-Lys-Tyr-Met-Val-Met-NH2 (WKYMVM) stimulates the activation of phospholipase D (PLD) via Ca2+ increase and protein kinase C activation in mouse DC cell line, DC2.4. WKYMVM stimulates the phagocytic activity, which is inhibited in the presence of N-butanol but not t-butanol in DC2.4 cells. Furthermore, the addition of phosphatidic acid, an enzymatic product of PLD activity, enhanced the phagocytic activity in DC2.4 cells. Since at least two of formyl peptide receptor (FPR) family (FPR1 and FPR2) are expressed in DC2.4 as well as in mouse bone marrow-derived dendritic cells, this study suggests that the activation of FPR family by WKYMVM stimulates the PLD activity resulting in phagocytic activity in DC2.4 cells.
1-Butanol/pharmacology
;
Animals
;
Bone Marrow Cells/cytology/metabolism
;
Calcium Signaling/*drug effects
;
Cell Death/immunology
;
Cell Line
;
Communicable Diseases/immunology
;
Dendritic Cells/immunology/*metabolism
;
Mice
;
Neoplasms/immunology
;
Oligopeptides/*pharmacology
;
Phagocytosis/*drug effects
;
Phosphatidic Acids/pharmacology
;
Phospholipase D/*metabolism
;
Receptors, Formyl Peptide/*metabolism
;
Research Support, Non-U.S. Gov't
;
tert-Butyl Alcohol/pharmacology