1.Quantitative Analysis of Glycosaminoglycan in the Articular Cartilage Using Absorption of MR Contrast Agent in Cadaveric Knees.
Shi Uk LEE ; Philipp LANG ; Tai Ryoon HAN
Journal of the Korean Knee Society 2003;15(1):84-92
PURPOSE: To determine the validity of the gadolinium dimeglumine(GdDTPA2-) enhanced magnetic resonance(MR) images by correlating to biochemical components especially glycosaminoglycans(GAG) content in the early detection of osteoarthritis. MATERIALS AND METHODS: Eight cadaveric knees were scanned to obtain pre-contrast T1 relaxation time using a 1.5T MR imaging unit. 7 hours after intra-articular injection of 40 ml of saline solution containing 4mM/L GdDTPA2-, MR images were obtained. Cartilages of the knee segments were removed from 14 sites of medial and lateral condyles of femur and tibia. Wet weight, dry weight, GAG content, and DNA content were measured. From the T1-weighted image series, T1 maps were generated. The T1 relaxation times of each part of the cartilage were compared with the results of the biochemical assay. RESULTS: The concentration of GdDTPA2- calculated from pre- and post-contrast T1 relaxation times was reverse-linearly related to GAG concentration. The R2 (square of correlation coefficient) was 0.684. The R2 for medial femoral condyle, lateral femoral condyle, medial tibial condyle, and lateral tibial condyle were 0.754, 0.639, 0.788, and 0.644, respectively. CONCLUSION: GdDTPA2- enhanced MR imaging can be used as a method of GAG imaging which has a potential for the early diagnosis of osteoarthritis.
Absorption*
;
Cadaver*
;
Cartilage
;
Cartilage, Articular*
;
DNA
;
Early Diagnosis
;
Femur
;
Gadolinium
;
Injections, Intra-Articular
;
Knee*
;
Magnetic Resonance Imaging
;
Osteoarthritis
;
Relaxation
;
Sodium Chloride
;
Tibia
2.Analyzing Large Language Models’ Responses to Common Lumbar Spine Fusion Surgery Questions: A Comparison Between ChatGPT and Bard
Siegmund Philipp LANG ; Ezra Tilahun YOSEPH ; Aneysis D. GONZALEZ-SUAREZ ; Robert KIM ; Parastou FATEMI ; Katherine WAGNER ; Nicolai MALDANER ; Martin N. STIENEN ; Corinna Clio ZYGOURAKIS
Neurospine 2024;21(2):633-641
Objective:
In the digital age, patients turn to online sources for lumbar spine fusion information, necessitating a careful study of large language models (LLMs) like chat generative pre-trained transformer (ChatGPT) for patient education.
Methods:
Our study aims to assess the response quality of Open AI (artificial intelligence)’s ChatGPT 3.5 and Google’s Bard to patient questions on lumbar spine fusion surgery. We identified 10 critical questions from 158 frequently asked ones via Google search, which were then presented to both chatbots. Five blinded spine surgeons rated the responses on a 4-point scale from ‘unsatisfactory’ to ‘excellent.’ The clarity and professionalism of the answers were also evaluated using a 5-point Likert scale.
Results:
In our evaluation of 10 questions across ChatGPT 3.5 and Bard, 97% of responses were rated as excellent or satisfactory. Specifically, ChatGPT had 62% excellent and 32% minimally clarifying responses, with only 6% needing moderate or substantial clarification. Bard’s responses were 66% excellent and 24% minimally clarifying, with 10% requiring more clarification. No significant difference was found in the overall rating distribution between the 2 models. Both struggled with 3 specific questions regarding surgical risks, success rates, and selection of surgical approaches (Q3, Q4, and Q5). Interrater reliability was low for both models (ChatGPT: k = 0.041, p = 0.622; Bard: k = -0.040, p = 0.601). While both scored well on understanding and empathy, Bard received marginally lower ratings in empathy and professionalism.
Conclusion
ChatGPT3.5 and Bard effectively answered lumbar spine fusion FAQs, but further training and research are needed to solidify LLMs’ role in medical education and healthcare communication.
3.Analyzing Large Language Models’ Responses to Common Lumbar Spine Fusion Surgery Questions: A Comparison Between ChatGPT and Bard
Siegmund Philipp LANG ; Ezra Tilahun YOSEPH ; Aneysis D. GONZALEZ-SUAREZ ; Robert KIM ; Parastou FATEMI ; Katherine WAGNER ; Nicolai MALDANER ; Martin N. STIENEN ; Corinna Clio ZYGOURAKIS
Neurospine 2024;21(2):633-641
Objective:
In the digital age, patients turn to online sources for lumbar spine fusion information, necessitating a careful study of large language models (LLMs) like chat generative pre-trained transformer (ChatGPT) for patient education.
Methods:
Our study aims to assess the response quality of Open AI (artificial intelligence)’s ChatGPT 3.5 and Google’s Bard to patient questions on lumbar spine fusion surgery. We identified 10 critical questions from 158 frequently asked ones via Google search, which were then presented to both chatbots. Five blinded spine surgeons rated the responses on a 4-point scale from ‘unsatisfactory’ to ‘excellent.’ The clarity and professionalism of the answers were also evaluated using a 5-point Likert scale.
Results:
In our evaluation of 10 questions across ChatGPT 3.5 and Bard, 97% of responses were rated as excellent or satisfactory. Specifically, ChatGPT had 62% excellent and 32% minimally clarifying responses, with only 6% needing moderate or substantial clarification. Bard’s responses were 66% excellent and 24% minimally clarifying, with 10% requiring more clarification. No significant difference was found in the overall rating distribution between the 2 models. Both struggled with 3 specific questions regarding surgical risks, success rates, and selection of surgical approaches (Q3, Q4, and Q5). Interrater reliability was low for both models (ChatGPT: k = 0.041, p = 0.622; Bard: k = -0.040, p = 0.601). While both scored well on understanding and empathy, Bard received marginally lower ratings in empathy and professionalism.
Conclusion
ChatGPT3.5 and Bard effectively answered lumbar spine fusion FAQs, but further training and research are needed to solidify LLMs’ role in medical education and healthcare communication.
4.Analyzing Large Language Models’ Responses to Common Lumbar Spine Fusion Surgery Questions: A Comparison Between ChatGPT and Bard
Siegmund Philipp LANG ; Ezra Tilahun YOSEPH ; Aneysis D. GONZALEZ-SUAREZ ; Robert KIM ; Parastou FATEMI ; Katherine WAGNER ; Nicolai MALDANER ; Martin N. STIENEN ; Corinna Clio ZYGOURAKIS
Neurospine 2024;21(2):633-641
Objective:
In the digital age, patients turn to online sources for lumbar spine fusion information, necessitating a careful study of large language models (LLMs) like chat generative pre-trained transformer (ChatGPT) for patient education.
Methods:
Our study aims to assess the response quality of Open AI (artificial intelligence)’s ChatGPT 3.5 and Google’s Bard to patient questions on lumbar spine fusion surgery. We identified 10 critical questions from 158 frequently asked ones via Google search, which were then presented to both chatbots. Five blinded spine surgeons rated the responses on a 4-point scale from ‘unsatisfactory’ to ‘excellent.’ The clarity and professionalism of the answers were also evaluated using a 5-point Likert scale.
Results:
In our evaluation of 10 questions across ChatGPT 3.5 and Bard, 97% of responses were rated as excellent or satisfactory. Specifically, ChatGPT had 62% excellent and 32% minimally clarifying responses, with only 6% needing moderate or substantial clarification. Bard’s responses were 66% excellent and 24% minimally clarifying, with 10% requiring more clarification. No significant difference was found in the overall rating distribution between the 2 models. Both struggled with 3 specific questions regarding surgical risks, success rates, and selection of surgical approaches (Q3, Q4, and Q5). Interrater reliability was low for both models (ChatGPT: k = 0.041, p = 0.622; Bard: k = -0.040, p = 0.601). While both scored well on understanding and empathy, Bard received marginally lower ratings in empathy and professionalism.
Conclusion
ChatGPT3.5 and Bard effectively answered lumbar spine fusion FAQs, but further training and research are needed to solidify LLMs’ role in medical education and healthcare communication.
5.Analyzing Large Language Models’ Responses to Common Lumbar Spine Fusion Surgery Questions: A Comparison Between ChatGPT and Bard
Siegmund Philipp LANG ; Ezra Tilahun YOSEPH ; Aneysis D. GONZALEZ-SUAREZ ; Robert KIM ; Parastou FATEMI ; Katherine WAGNER ; Nicolai MALDANER ; Martin N. STIENEN ; Corinna Clio ZYGOURAKIS
Neurospine 2024;21(2):633-641
Objective:
In the digital age, patients turn to online sources for lumbar spine fusion information, necessitating a careful study of large language models (LLMs) like chat generative pre-trained transformer (ChatGPT) for patient education.
Methods:
Our study aims to assess the response quality of Open AI (artificial intelligence)’s ChatGPT 3.5 and Google’s Bard to patient questions on lumbar spine fusion surgery. We identified 10 critical questions from 158 frequently asked ones via Google search, which were then presented to both chatbots. Five blinded spine surgeons rated the responses on a 4-point scale from ‘unsatisfactory’ to ‘excellent.’ The clarity and professionalism of the answers were also evaluated using a 5-point Likert scale.
Results:
In our evaluation of 10 questions across ChatGPT 3.5 and Bard, 97% of responses were rated as excellent or satisfactory. Specifically, ChatGPT had 62% excellent and 32% minimally clarifying responses, with only 6% needing moderate or substantial clarification. Bard’s responses were 66% excellent and 24% minimally clarifying, with 10% requiring more clarification. No significant difference was found in the overall rating distribution between the 2 models. Both struggled with 3 specific questions regarding surgical risks, success rates, and selection of surgical approaches (Q3, Q4, and Q5). Interrater reliability was low for both models (ChatGPT: k = 0.041, p = 0.622; Bard: k = -0.040, p = 0.601). While both scored well on understanding and empathy, Bard received marginally lower ratings in empathy and professionalism.
Conclusion
ChatGPT3.5 and Bard effectively answered lumbar spine fusion FAQs, but further training and research are needed to solidify LLMs’ role in medical education and healthcare communication.
6.Analyzing Large Language Models’ Responses to Common Lumbar Spine Fusion Surgery Questions: A Comparison Between ChatGPT and Bard
Siegmund Philipp LANG ; Ezra Tilahun YOSEPH ; Aneysis D. GONZALEZ-SUAREZ ; Robert KIM ; Parastou FATEMI ; Katherine WAGNER ; Nicolai MALDANER ; Martin N. STIENEN ; Corinna Clio ZYGOURAKIS
Neurospine 2024;21(2):633-641
Objective:
In the digital age, patients turn to online sources for lumbar spine fusion information, necessitating a careful study of large language models (LLMs) like chat generative pre-trained transformer (ChatGPT) for patient education.
Methods:
Our study aims to assess the response quality of Open AI (artificial intelligence)’s ChatGPT 3.5 and Google’s Bard to patient questions on lumbar spine fusion surgery. We identified 10 critical questions from 158 frequently asked ones via Google search, which were then presented to both chatbots. Five blinded spine surgeons rated the responses on a 4-point scale from ‘unsatisfactory’ to ‘excellent.’ The clarity and professionalism of the answers were also evaluated using a 5-point Likert scale.
Results:
In our evaluation of 10 questions across ChatGPT 3.5 and Bard, 97% of responses were rated as excellent or satisfactory. Specifically, ChatGPT had 62% excellent and 32% minimally clarifying responses, with only 6% needing moderate or substantial clarification. Bard’s responses were 66% excellent and 24% minimally clarifying, with 10% requiring more clarification. No significant difference was found in the overall rating distribution between the 2 models. Both struggled with 3 specific questions regarding surgical risks, success rates, and selection of surgical approaches (Q3, Q4, and Q5). Interrater reliability was low for both models (ChatGPT: k = 0.041, p = 0.622; Bard: k = -0.040, p = 0.601). While both scored well on understanding and empathy, Bard received marginally lower ratings in empathy and professionalism.
Conclusion
ChatGPT3.5 and Bard effectively answered lumbar spine fusion FAQs, but further training and research are needed to solidify LLMs’ role in medical education and healthcare communication.
7.Recanalization Outcomes and Procedural Complications in Patients With Acute Ischemic Stroke and COVID-19 Receiving Endovascular Treatment
João Pedro MARTO ; Davide STRAMBO ; George NTAIOS ; Thanh N NGUYEN ; Pawel WRONA ; Simon ESCALARD ; Simona MARCHESELLI ; Ossama Yassin MANSOUR ; Blanca FUENTES ; Malgorzata DOROBEK ; Marta NOWAKOWSKA-KOTAS ; Elena Oana TERECOASA ; Jonathan M. COUTINHO ; Mariana CARVALHO-DIAS ; Patricia CALLEJA ; João SARGENTO-FREITAS ; Ana PAIVA-NUNES ; Martin ŠRÁMEK ; Priyank KHANDELWAL ; Torcato MEIRA ; Mohamad ABDALKADER ; Pascal JABBOUR ; Martin KOVÁŘ ; Oscar AYO-MARTIN ; Patrik MICHEL ; Roman HERZIG ; Anna CZŁONKOWKSA ; Jelle DEMEESTERE ; Raul G. NOGUEIRA ; Alexander SALERNO ; Susanne WEGENER ; Philipp BAUMGARTNER ; Carlo W. CEREDA ; Giovanni BIANCO ; Morin BEYELER ; Marcel ARNOLD ; Emmanuel CARRERA ; Paolo MACHI ; Valerian ALTERSBERGER ; Leo BONATI ; Henrik GENSICKE ; Manuel BOLOGNESE ; Nils PETERS ; Stephan WETZEL ; Marta MAGRIÇO ; João NUNO RAMOS ; Rita MACHADO ; Carolina MAIA ; Egídio MACHADO ; Patrícia FERREIRA ; Teresa PINHO-E-MELO ; André PAULA ; Manuel Alberto CORREIA ; Pedro CASTRO ; Elsa AZEVEDO ; Luís ALBUQUERQUE ; José NUNO-ALVES ; Joana FERREIRA-PINTO ; Torcato MEIRA ; Liliana PEREIRA ; Miguel RODRIGUES ; André ARAÚJO ; Marta RODRIGUES ; Mariana ROCHA ; Ângelo PEREIRA-FONSECA ; Luís RIBEIRO ; Ricardo VARELA ; Sofia MALHEIRO ; Manuel CAPPELLARI ; Cecilia ZIVELONGHI ; Giulia SAJEVA ; Andrea ZINI ; Gentile MAURO ; Forlivesi STEFANO ; Ludovica MIGLIACCIO ; Maria SESSA ; Sara La GIOIA ; Alessandro PEZZINI ; Davide SANGALLI ; Marialuisa ZEDDE ; Rosario PASCARELLA ; Carlo FERRARESE ; Simone BERETTA ; Susanna DIAMANTI ; Ghil SCHWARZ ; Giovanni FRISULLO ; Pierre SENERS ; Candice SABBEN ; Michel PIOTIN ; Benjamin MAIER ; Guillaume CHARBONNIER ; Fabrice VUILLIER ; Loic LEGRIS ; Pauline CUISENIER ; Francesca R. VODRET ; Gaultier MARNAT ; Jean-Sebastien LIEGEY ; Igor SIBON ; Fabian FLOTTMANN ; Gabriel BROOCKS ; Nils-Ole GLOYER ; Ferdinand O. BOHMANN ; Jan Hendrik SCHAEFER ; Christian H. NOLTE ; Heinrich AUDEBERT ; Eberhard SIEBERT ; Marek SYKORA ; Wilfried LANG ; Julia FERRARI ; Lukas MAYER-SUESS ; Michael KNOFLACH ; Elke-Ruth GIZEWSKI ; Jeffrey STOLP ; Lotte J. STOLZE ; Paul J. NEDERKOORN ; Ido VAN-DEN-WIJNGAARD ; Joke DE MERIS ; Robin LEMMEN ; Sylvie DE RAEDT ; Fenne VANDERVORST ; Matthieu Pierre RUTGERS ; Antoine GUILMOT ; Anne DUSART ; Flavio BELLANTE ; Fernando OSTOS ; Guillermo GONZALEZ-ORTEGA ; Paloma MARTÍN-JIMÉNEZ ; Sebastian GARCÍA-MADRONA ; Antonio CRUZ-CULEBRAS ; Rocio VERA ; Maria-Consuelo MATUTE ; María ALONSO-DE-LECIÑANA ; Ricardo RIGUAL ; Exuperio DÍEZ-TEJEDOR ; Soledad PÉREZ-SÁNCHEZ ; Joan MONTANER ; Fernando DÍAZ-OTERO ; Natalia PEREZ-DE-LA-OSSA ; Belén FLORES-PINA ; Lucia MUÑOZ-NARBONA ; Angel CHAMORRO ; Alejandro RODRÍGUEZ-VÁZQUEZ ; Arturo RENÚ ; Francisco HERNANDEZ-FERNANDEZ ; Tomas SEGURA ; Herbert TEJADA-MEZA ; Daniel SAGARRA-MUR ; Marta SERRANO-PONZ ; Thant HLAING ; Isaiah SEE ; Robert SIMISTER ; David J. WERRING ; Espen Saxhaug KRISTOFFERSEN ; Annika NORDANSTIG ; Katarina JOOD ; Alexandros RENTZOS ; Libor ŠIMU˚NE ; Dagmar KRAJÍČKOVÁ ; Antonín KRAJINA ; Robert MIKULÍK ; Martina CVIKOVÁ ; Jan VINKLÁREK ; David ŠKOLOUDÍK ; Martin ROUBEC ; Eva HURTIKOVA ; Rostislav HRUBÝ ; Svatopluk OSTRY ; Ondrej SKODA ; Marek PERNICKA ; Lubomír KOČÍ ; Zuzana EICHLOVÁ ; Martin JÍRA ; Michal PANSKÝ ; Pavel MENCL ; Hana PALOUŠKOVÁ ; Aleš TOMEK ; Petr JANSKÝ ; Anna OLŠEROVÁ ; Roman HAVLÍČEK ; Petr MALÝ ; Lukáš TRAKAL ; Jan FIKSA ; Matěj SLOVÁK ; Michał KARLIŃSK ; Maciej NOWAK ; Halina SIENKIEWICZ-JAROSZ ; Anna BOCHYNSKA ; Tomasz HOMA ; Katarzyna SAWCZYNSKA ; Agnieszka SLOWIK ; Ewa WLODARCZYK ; Marcin WIĄCEK ; Izabella TOMASZEWSKA-LAMPART ; Bartosz SIECZKOWSKI ; Halina BARTOSIK-PSUJEK ; Marta BILIK ; Anna BANDZAREWICZ ; Justyna ZIELIŃSKA-TUREK ; Krystian OBARA ; Paweł URBANOWSKI ; Sławomir BUDREWICZ ; Maciej GUZIŃSKI ; Milena ŚWITOŃSKA ; Iwona RUTKOWSKA ; Paulina SOBIESZAK-SKURA ; Beata ŁABUZ-ROSZAK ; Aleksander DĘBIEC ; Jacek STASZEWSKI ; Adam STĘPIEŃ ; Jacek ZWIERNIK ; Grzegorz WASILEWSKI ; Cristina TIU ; Razvan-Alexandru RADU ; Anca NEGRILA ; Bogdan DOROBAT ; Cristina PANEA ; Vlad TIU ; Simona PETRESCU ; Atilla ÖZCAN-ÖZDEMIR ; Mostafa MAHMOUD ; Hussam EL-SAMAHY ; Hazem ABDELKHALEK ; Jasem AL-HASHEL ; Ismail IBRAHIM ISMAIL ; Athari SALMEEN ; Abdoreza GHOREISHI ; Sergiu SABETAY ; Hana GROSS ; Piers KLEIN ; Kareem EL NAAMANI ; Stavropoula TJOUMAKARIS ; Rawad ABBAS ; Ghada-A MOHAMED ; Alex CHEBL ; Jiangyong MIN ; Majesta HOVINGH ; Jenney-P TSAI ; Muhib-A KHAN ; Krishna NALLEBALLE ; Sanjeeva ONTEDDU ; Hesham-E MASOUD ; Mina MICHAEL ; Navreet KAUR ; Laith MAALI ; Michael ABRAHAM ; Ivo BACH ; Melody ONG ; Denis BABICI ; Ayaz-M. KHAWAJA ; Maryam HAKEMI ; Kumar RAJAMANI ; Vanessa CANO-NIGENDA ; Antonio ARAUZ ; Pablo AMAYA ; Natalia LLANOS ; Akemi ARANGO ; Miguel A. VENCES ; José-Domingo BARRIENTOS ; Rayllene CAETANO ; Rodrigo TARGA ; Sergio SCOLLO ; Patrick YALUNG ; Shashank NAGENDRA ; Abhijit GAIKWAD ; Kwon-Duk SEO ;
Journal of Stroke 2025;27(1):128-132
8.Recanalization Outcomes and Procedural Complications in Patients With Acute Ischemic Stroke and COVID-19 Receiving Endovascular Treatment
João Pedro MARTO ; Davide STRAMBO ; George NTAIOS ; Thanh N NGUYEN ; Pawel WRONA ; Simon ESCALARD ; Simona MARCHESELLI ; Ossama Yassin MANSOUR ; Blanca FUENTES ; Malgorzata DOROBEK ; Marta NOWAKOWSKA-KOTAS ; Elena Oana TERECOASA ; Jonathan M. COUTINHO ; Mariana CARVALHO-DIAS ; Patricia CALLEJA ; João SARGENTO-FREITAS ; Ana PAIVA-NUNES ; Martin ŠRÁMEK ; Priyank KHANDELWAL ; Torcato MEIRA ; Mohamad ABDALKADER ; Pascal JABBOUR ; Martin KOVÁŘ ; Oscar AYO-MARTIN ; Patrik MICHEL ; Roman HERZIG ; Anna CZŁONKOWKSA ; Jelle DEMEESTERE ; Raul G. NOGUEIRA ; Alexander SALERNO ; Susanne WEGENER ; Philipp BAUMGARTNER ; Carlo W. CEREDA ; Giovanni BIANCO ; Morin BEYELER ; Marcel ARNOLD ; Emmanuel CARRERA ; Paolo MACHI ; Valerian ALTERSBERGER ; Leo BONATI ; Henrik GENSICKE ; Manuel BOLOGNESE ; Nils PETERS ; Stephan WETZEL ; Marta MAGRIÇO ; João NUNO RAMOS ; Rita MACHADO ; Carolina MAIA ; Egídio MACHADO ; Patrícia FERREIRA ; Teresa PINHO-E-MELO ; André PAULA ; Manuel Alberto CORREIA ; Pedro CASTRO ; Elsa AZEVEDO ; Luís ALBUQUERQUE ; José NUNO-ALVES ; Joana FERREIRA-PINTO ; Torcato MEIRA ; Liliana PEREIRA ; Miguel RODRIGUES ; André ARAÚJO ; Marta RODRIGUES ; Mariana ROCHA ; Ângelo PEREIRA-FONSECA ; Luís RIBEIRO ; Ricardo VARELA ; Sofia MALHEIRO ; Manuel CAPPELLARI ; Cecilia ZIVELONGHI ; Giulia SAJEVA ; Andrea ZINI ; Gentile MAURO ; Forlivesi STEFANO ; Ludovica MIGLIACCIO ; Maria SESSA ; Sara La GIOIA ; Alessandro PEZZINI ; Davide SANGALLI ; Marialuisa ZEDDE ; Rosario PASCARELLA ; Carlo FERRARESE ; Simone BERETTA ; Susanna DIAMANTI ; Ghil SCHWARZ ; Giovanni FRISULLO ; Pierre SENERS ; Candice SABBEN ; Michel PIOTIN ; Benjamin MAIER ; Guillaume CHARBONNIER ; Fabrice VUILLIER ; Loic LEGRIS ; Pauline CUISENIER ; Francesca R. VODRET ; Gaultier MARNAT ; Jean-Sebastien LIEGEY ; Igor SIBON ; Fabian FLOTTMANN ; Gabriel BROOCKS ; Nils-Ole GLOYER ; Ferdinand O. BOHMANN ; Jan Hendrik SCHAEFER ; Christian H. NOLTE ; Heinrich AUDEBERT ; Eberhard SIEBERT ; Marek SYKORA ; Wilfried LANG ; Julia FERRARI ; Lukas MAYER-SUESS ; Michael KNOFLACH ; Elke-Ruth GIZEWSKI ; Jeffrey STOLP ; Lotte J. STOLZE ; Paul J. NEDERKOORN ; Ido VAN-DEN-WIJNGAARD ; Joke DE MERIS ; Robin LEMMEN ; Sylvie DE RAEDT ; Fenne VANDERVORST ; Matthieu Pierre RUTGERS ; Antoine GUILMOT ; Anne DUSART ; Flavio BELLANTE ; Fernando OSTOS ; Guillermo GONZALEZ-ORTEGA ; Paloma MARTÍN-JIMÉNEZ ; Sebastian GARCÍA-MADRONA ; Antonio CRUZ-CULEBRAS ; Rocio VERA ; Maria-Consuelo MATUTE ; María ALONSO-DE-LECIÑANA ; Ricardo RIGUAL ; Exuperio DÍEZ-TEJEDOR ; Soledad PÉREZ-SÁNCHEZ ; Joan MONTANER ; Fernando DÍAZ-OTERO ; Natalia PEREZ-DE-LA-OSSA ; Belén FLORES-PINA ; Lucia MUÑOZ-NARBONA ; Angel CHAMORRO ; Alejandro RODRÍGUEZ-VÁZQUEZ ; Arturo RENÚ ; Francisco HERNANDEZ-FERNANDEZ ; Tomas SEGURA ; Herbert TEJADA-MEZA ; Daniel SAGARRA-MUR ; Marta SERRANO-PONZ ; Thant HLAING ; Isaiah SEE ; Robert SIMISTER ; David J. WERRING ; Espen Saxhaug KRISTOFFERSEN ; Annika NORDANSTIG ; Katarina JOOD ; Alexandros RENTZOS ; Libor ŠIMU˚NE ; Dagmar KRAJÍČKOVÁ ; Antonín KRAJINA ; Robert MIKULÍK ; Martina CVIKOVÁ ; Jan VINKLÁREK ; David ŠKOLOUDÍK ; Martin ROUBEC ; Eva HURTIKOVA ; Rostislav HRUBÝ ; Svatopluk OSTRY ; Ondrej SKODA ; Marek PERNICKA ; Lubomír KOČÍ ; Zuzana EICHLOVÁ ; Martin JÍRA ; Michal PANSKÝ ; Pavel MENCL ; Hana PALOUŠKOVÁ ; Aleš TOMEK ; Petr JANSKÝ ; Anna OLŠEROVÁ ; Roman HAVLÍČEK ; Petr MALÝ ; Lukáš TRAKAL ; Jan FIKSA ; Matěj SLOVÁK ; Michał KARLIŃSK ; Maciej NOWAK ; Halina SIENKIEWICZ-JAROSZ ; Anna BOCHYNSKA ; Tomasz HOMA ; Katarzyna SAWCZYNSKA ; Agnieszka SLOWIK ; Ewa WLODARCZYK ; Marcin WIĄCEK ; Izabella TOMASZEWSKA-LAMPART ; Bartosz SIECZKOWSKI ; Halina BARTOSIK-PSUJEK ; Marta BILIK ; Anna BANDZAREWICZ ; Justyna ZIELIŃSKA-TUREK ; Krystian OBARA ; Paweł URBANOWSKI ; Sławomir BUDREWICZ ; Maciej GUZIŃSKI ; Milena ŚWITOŃSKA ; Iwona RUTKOWSKA ; Paulina SOBIESZAK-SKURA ; Beata ŁABUZ-ROSZAK ; Aleksander DĘBIEC ; Jacek STASZEWSKI ; Adam STĘPIEŃ ; Jacek ZWIERNIK ; Grzegorz WASILEWSKI ; Cristina TIU ; Razvan-Alexandru RADU ; Anca NEGRILA ; Bogdan DOROBAT ; Cristina PANEA ; Vlad TIU ; Simona PETRESCU ; Atilla ÖZCAN-ÖZDEMIR ; Mostafa MAHMOUD ; Hussam EL-SAMAHY ; Hazem ABDELKHALEK ; Jasem AL-HASHEL ; Ismail IBRAHIM ISMAIL ; Athari SALMEEN ; Abdoreza GHOREISHI ; Sergiu SABETAY ; Hana GROSS ; Piers KLEIN ; Kareem EL NAAMANI ; Stavropoula TJOUMAKARIS ; Rawad ABBAS ; Ghada-A MOHAMED ; Alex CHEBL ; Jiangyong MIN ; Majesta HOVINGH ; Jenney-P TSAI ; Muhib-A KHAN ; Krishna NALLEBALLE ; Sanjeeva ONTEDDU ; Hesham-E MASOUD ; Mina MICHAEL ; Navreet KAUR ; Laith MAALI ; Michael ABRAHAM ; Ivo BACH ; Melody ONG ; Denis BABICI ; Ayaz-M. KHAWAJA ; Maryam HAKEMI ; Kumar RAJAMANI ; Vanessa CANO-NIGENDA ; Antonio ARAUZ ; Pablo AMAYA ; Natalia LLANOS ; Akemi ARANGO ; Miguel A. VENCES ; José-Domingo BARRIENTOS ; Rayllene CAETANO ; Rodrigo TARGA ; Sergio SCOLLO ; Patrick YALUNG ; Shashank NAGENDRA ; Abhijit GAIKWAD ; Kwon-Duk SEO ;
Journal of Stroke 2025;27(1):128-132
9.Recanalization Outcomes and Procedural Complications in Patients With Acute Ischemic Stroke and COVID-19 Receiving Endovascular Treatment
João Pedro MARTO ; Davide STRAMBO ; George NTAIOS ; Thanh N NGUYEN ; Pawel WRONA ; Simon ESCALARD ; Simona MARCHESELLI ; Ossama Yassin MANSOUR ; Blanca FUENTES ; Malgorzata DOROBEK ; Marta NOWAKOWSKA-KOTAS ; Elena Oana TERECOASA ; Jonathan M. COUTINHO ; Mariana CARVALHO-DIAS ; Patricia CALLEJA ; João SARGENTO-FREITAS ; Ana PAIVA-NUNES ; Martin ŠRÁMEK ; Priyank KHANDELWAL ; Torcato MEIRA ; Mohamad ABDALKADER ; Pascal JABBOUR ; Martin KOVÁŘ ; Oscar AYO-MARTIN ; Patrik MICHEL ; Roman HERZIG ; Anna CZŁONKOWKSA ; Jelle DEMEESTERE ; Raul G. NOGUEIRA ; Alexander SALERNO ; Susanne WEGENER ; Philipp BAUMGARTNER ; Carlo W. CEREDA ; Giovanni BIANCO ; Morin BEYELER ; Marcel ARNOLD ; Emmanuel CARRERA ; Paolo MACHI ; Valerian ALTERSBERGER ; Leo BONATI ; Henrik GENSICKE ; Manuel BOLOGNESE ; Nils PETERS ; Stephan WETZEL ; Marta MAGRIÇO ; João NUNO RAMOS ; Rita MACHADO ; Carolina MAIA ; Egídio MACHADO ; Patrícia FERREIRA ; Teresa PINHO-E-MELO ; André PAULA ; Manuel Alberto CORREIA ; Pedro CASTRO ; Elsa AZEVEDO ; Luís ALBUQUERQUE ; José NUNO-ALVES ; Joana FERREIRA-PINTO ; Torcato MEIRA ; Liliana PEREIRA ; Miguel RODRIGUES ; André ARAÚJO ; Marta RODRIGUES ; Mariana ROCHA ; Ângelo PEREIRA-FONSECA ; Luís RIBEIRO ; Ricardo VARELA ; Sofia MALHEIRO ; Manuel CAPPELLARI ; Cecilia ZIVELONGHI ; Giulia SAJEVA ; Andrea ZINI ; Gentile MAURO ; Forlivesi STEFANO ; Ludovica MIGLIACCIO ; Maria SESSA ; Sara La GIOIA ; Alessandro PEZZINI ; Davide SANGALLI ; Marialuisa ZEDDE ; Rosario PASCARELLA ; Carlo FERRARESE ; Simone BERETTA ; Susanna DIAMANTI ; Ghil SCHWARZ ; Giovanni FRISULLO ; Pierre SENERS ; Candice SABBEN ; Michel PIOTIN ; Benjamin MAIER ; Guillaume CHARBONNIER ; Fabrice VUILLIER ; Loic LEGRIS ; Pauline CUISENIER ; Francesca R. VODRET ; Gaultier MARNAT ; Jean-Sebastien LIEGEY ; Igor SIBON ; Fabian FLOTTMANN ; Gabriel BROOCKS ; Nils-Ole GLOYER ; Ferdinand O. BOHMANN ; Jan Hendrik SCHAEFER ; Christian H. NOLTE ; Heinrich AUDEBERT ; Eberhard SIEBERT ; Marek SYKORA ; Wilfried LANG ; Julia FERRARI ; Lukas MAYER-SUESS ; Michael KNOFLACH ; Elke-Ruth GIZEWSKI ; Jeffrey STOLP ; Lotte J. STOLZE ; Paul J. NEDERKOORN ; Ido VAN-DEN-WIJNGAARD ; Joke DE MERIS ; Robin LEMMEN ; Sylvie DE RAEDT ; Fenne VANDERVORST ; Matthieu Pierre RUTGERS ; Antoine GUILMOT ; Anne DUSART ; Flavio BELLANTE ; Fernando OSTOS ; Guillermo GONZALEZ-ORTEGA ; Paloma MARTÍN-JIMÉNEZ ; Sebastian GARCÍA-MADRONA ; Antonio CRUZ-CULEBRAS ; Rocio VERA ; Maria-Consuelo MATUTE ; María ALONSO-DE-LECIÑANA ; Ricardo RIGUAL ; Exuperio DÍEZ-TEJEDOR ; Soledad PÉREZ-SÁNCHEZ ; Joan MONTANER ; Fernando DÍAZ-OTERO ; Natalia PEREZ-DE-LA-OSSA ; Belén FLORES-PINA ; Lucia MUÑOZ-NARBONA ; Angel CHAMORRO ; Alejandro RODRÍGUEZ-VÁZQUEZ ; Arturo RENÚ ; Francisco HERNANDEZ-FERNANDEZ ; Tomas SEGURA ; Herbert TEJADA-MEZA ; Daniel SAGARRA-MUR ; Marta SERRANO-PONZ ; Thant HLAING ; Isaiah SEE ; Robert SIMISTER ; David J. WERRING ; Espen Saxhaug KRISTOFFERSEN ; Annika NORDANSTIG ; Katarina JOOD ; Alexandros RENTZOS ; Libor ŠIMU˚NE ; Dagmar KRAJÍČKOVÁ ; Antonín KRAJINA ; Robert MIKULÍK ; Martina CVIKOVÁ ; Jan VINKLÁREK ; David ŠKOLOUDÍK ; Martin ROUBEC ; Eva HURTIKOVA ; Rostislav HRUBÝ ; Svatopluk OSTRY ; Ondrej SKODA ; Marek PERNICKA ; Lubomír KOČÍ ; Zuzana EICHLOVÁ ; Martin JÍRA ; Michal PANSKÝ ; Pavel MENCL ; Hana PALOUŠKOVÁ ; Aleš TOMEK ; Petr JANSKÝ ; Anna OLŠEROVÁ ; Roman HAVLÍČEK ; Petr MALÝ ; Lukáš TRAKAL ; Jan FIKSA ; Matěj SLOVÁK ; Michał KARLIŃSK ; Maciej NOWAK ; Halina SIENKIEWICZ-JAROSZ ; Anna BOCHYNSKA ; Tomasz HOMA ; Katarzyna SAWCZYNSKA ; Agnieszka SLOWIK ; Ewa WLODARCZYK ; Marcin WIĄCEK ; Izabella TOMASZEWSKA-LAMPART ; Bartosz SIECZKOWSKI ; Halina BARTOSIK-PSUJEK ; Marta BILIK ; Anna BANDZAREWICZ ; Justyna ZIELIŃSKA-TUREK ; Krystian OBARA ; Paweł URBANOWSKI ; Sławomir BUDREWICZ ; Maciej GUZIŃSKI ; Milena ŚWITOŃSKA ; Iwona RUTKOWSKA ; Paulina SOBIESZAK-SKURA ; Beata ŁABUZ-ROSZAK ; Aleksander DĘBIEC ; Jacek STASZEWSKI ; Adam STĘPIEŃ ; Jacek ZWIERNIK ; Grzegorz WASILEWSKI ; Cristina TIU ; Razvan-Alexandru RADU ; Anca NEGRILA ; Bogdan DOROBAT ; Cristina PANEA ; Vlad TIU ; Simona PETRESCU ; Atilla ÖZCAN-ÖZDEMIR ; Mostafa MAHMOUD ; Hussam EL-SAMAHY ; Hazem ABDELKHALEK ; Jasem AL-HASHEL ; Ismail IBRAHIM ISMAIL ; Athari SALMEEN ; Abdoreza GHOREISHI ; Sergiu SABETAY ; Hana GROSS ; Piers KLEIN ; Kareem EL NAAMANI ; Stavropoula TJOUMAKARIS ; Rawad ABBAS ; Ghada-A MOHAMED ; Alex CHEBL ; Jiangyong MIN ; Majesta HOVINGH ; Jenney-P TSAI ; Muhib-A KHAN ; Krishna NALLEBALLE ; Sanjeeva ONTEDDU ; Hesham-E MASOUD ; Mina MICHAEL ; Navreet KAUR ; Laith MAALI ; Michael ABRAHAM ; Ivo BACH ; Melody ONG ; Denis BABICI ; Ayaz-M. KHAWAJA ; Maryam HAKEMI ; Kumar RAJAMANI ; Vanessa CANO-NIGENDA ; Antonio ARAUZ ; Pablo AMAYA ; Natalia LLANOS ; Akemi ARANGO ; Miguel A. VENCES ; José-Domingo BARRIENTOS ; Rayllene CAETANO ; Rodrigo TARGA ; Sergio SCOLLO ; Patrick YALUNG ; Shashank NAGENDRA ; Abhijit GAIKWAD ; Kwon-Duk SEO ;
Journal of Stroke 2025;27(1):128-132