1.Inhibitory Eefects of the novel tyrosine kinase inhibitor BGJ398 against human leukemic cell line KG-1 cells.
Yu JIANG ; Hong Ying CHAO ; Xiu Wen ZHANG ; Min ZHOU ; Xu Zhang LU ; Ri ZHANG ; Chuan HE ; Qian WANG
Chinese Journal of Hematology 2018;39(2):143-147
Objective: To explore the effects and possible mechanisms of the novel pan-FGFR inhibitor BGJ398 on KG-1 cells in vitro. Methods: Effects of BGJ398 on cells proliferation were detected by CCK-8, the apoptosis was assessed by Annexin V-FITC. Reverse transcriptionquantitative polymerase chain reaction (q-PCR) analysis was used to detect the expression of apoptosis-related genes B cell lymphoma-2 (Bcl-2) and caspase-3. Western blotting analysis was performed to explore the proteins expression levels of Bcl-2, caspase-3 and the expression of p-AKT, p-S6K, p-ERK and FGFR1. Results: BGJ398 effectively inhibited cell proliferation by dose-dependent manners. BGJ398(1.4 µmol/L) induced apoptosis of KG-1 cells by 36.4%, compared with 4.5% in the control group(P<0.001). Treatment with BGJ398 at 1.4 µmol/L led to significant increases in the expression levels of caspase-3, and decreases in the expression of Bcl-2 (P<0.005). In accordance with these results, Western blot analysis further confirmed the increased expression of Bcl-2 protein along with elevated caspase-3 activity. In addition, BGJ398 markedly down-regulated FGFR1OP2-FGFR1 fusion protein, p-AKT and p-S6K expression, but not p-ERK expression. Conclusion: Novel pan-FGFR inhibitor BGJ398 substantially suppressed KG-1 cell growth and induced apoptosis by inhibiting the expression of FGFR1, p-AKT, p-S6K and regulating apoptosis-related proteins.
Apoptosis
;
Caspase 3
;
Cell Line, Tumor
;
Cell Proliferation
;
Humans
;
Phenylurea Compounds/pharmacology*
;
Protein Kinase Inhibitors/pharmacology*
;
Pyrimidines/pharmacology*
2.Effect of sorafenib combined with daunorubicin on K562 cell line.
Ruo-Zhi XIAO ; Li-Lin WANG ; Xing-Xing RUAN ; Cheng-Ming HE ; Yan CHEN ; Dong-Jun LIN
Journal of Experimental Hematology 2010;18(3):621-624
The aim of this study was to investigate the effect of sorafenib combined with daunorubicin on leukemic k562 cell line. The inhibitory effect of sorafenib alone and its combination with daunorubicin on K562 cell proliferation was detected by MTT method; the synergistic effect was measured by CDI (coefficient of drug interaction); the apoptosis of K562 cells was observed by flow cytometry with Hoechst 33258 staining. The results showed that the sorafenib alone or its combination with daunorubicin could significantly inhibit K562 cell proliferation and the combination of both drugs displayed synergistic effect on K562 cells, meanwhile the apoptotic cells increased. It is concluded that the combination of sorafenib and daunorubicin has a obviously synergistic inhibitory effect on leukemic cell line K562.
Apoptosis
;
drug effects
;
Benzenesulfonates
;
pharmacology
;
Daunorubicin
;
pharmacology
;
Drug Synergism
;
Humans
;
K562 Cells
;
Niacinamide
;
analogs & derivatives
;
Phenylurea Compounds
;
Pyridines
;
pharmacology
3.Therapeutic effect of sorafenib on portal hypertension: research progress and mechanisms.
Yun ZHU ; Yang CHENG ; Aimin LI ; Rongcheng LUO
Journal of Southern Medical University 2014;34(1):133-136
Portal hypertension, as one of the major complications of liver cirrhosis, is a common clinical syndrome characterized by an increased portal pressure and the formation of portal-systemic collaterals. Currently no ideal therapeutic agent has been available for portal hypertension. Sorafenib is an oral tyrosine kinase inhibitor that has been shown to significantly improve blood flow dynamics, inhibit angiogenesis, reduce liver fibrosis and decrease portal pressure in the treatment of portal hypertension. The authors review the progress in the research of sorafenib in the treatment of portal hypertension and the mechanisms of its actions.
Animals
;
Humans
;
Hypertension, Portal
;
drug therapy
;
Niacinamide
;
analogs & derivatives
;
pharmacology
;
therapeutic use
;
Phenylurea Compounds
;
pharmacology
;
therapeutic use
4.Anti-proliferation effect of sorafenib in combination with 5-FU for hepatocellular carcinoma in vitro: antagonistic performance and mechanism.
Li-fen DENG ; Yan-hong WANG ; Qing-an JIA ; Zheng-gang REN ; Hu-jia SHEN ; Xiao-jing SUN ; Jing-huan LI
Chinese Journal of Hepatology 2013;21(11):845-849
OBJECTIVETo investigate the anti-cancer efficacy and mechanism of sorafenib and 5-fluorouracil (5-FU) therapy in vitro using the HCC cell line MHCCLM3.
METHODSThe effects of sorafenib and 5-FU, alone or in combination, on the proliferation of MHCCLM3 cells were evaluated by cell viability assays. Combined-effects analyses were conducted according to the median-effect principle established by Chou and Talalay. Effects on cell cycle distributions were tested by flow cytometry and expression of proteins related to the RAF/MEK/ERK and STAT3 signaling pathways and cyclinD1 were tested by western blotting.
RESULTSSorafenib and 5-FU alone or in combination displayed significant efficacy in inhibiting proliferation of the MHCCLM3 cells, with the following inhibition rates: sorafenib: 46.16% +/- 2.52%, 5-FU: 28.67% +/- 6.16%, and sorafenib + 5-FU: 22.59% +/- 6.89%. The sorafenib + 5-FU combination did not provide better results than treatment with either drug alone. The combination index values of the sorafenib and 5-FU treatments were mainly greater than 1, indicating that the two agents induced antagonistic, instead of synergistic, effects on the MHCCLM3 cells. In addition, the MHCCLM3 cells were less sensitive to 5-FU when administrated in combination with sorafenib, as evidenced by the half inhibitory concentration (IC50) significantly increasing from (102.86 +/- 27.84) mg/L to (178.61 +/- 20.73) mg/L (P = 0.003). Sorafenib alone induced G1 phase arrest (increasing from 44.73% +/- 1.63% to 65.80% +/- 0.56%; P less than 0.001) and significantly decreased the proportion of cells in S phase (decreasing from 46.63% +/- 0.65% to 22.83% +/- 1.75%; P less than 0.01), as well as down-regulated cyclinD1 expression (0.57 +/- 0.03-fold change vs. untreated control group; P less than 0.01). 5-FU alone up-regulated cyclinD1 expression (1.45 +/- 0.12-fold change vs. untreated control group; P less than 0.01). Moreover, sorafenib alone significantly inhibited the RAF/MEK/ERK and STAT3 pathways, with the fold-changes of p-C-RAF, p-ERK1/2 and p-STAT3 being 0.56 +/- 0.05, 0.54 +/- 0.02 and 0.36 +/- 0.02, respectively (all P less than 0.01); 5-FU alone produced no significant effects on these pathways.
CONCLUSIONAdministered alone, both sorafenib and 5-FU exert anti-tumoral activity on in vitro cultured HCC cells. The sorafenib + 5-FU combination treatment produces antagonistic, rather than synergistic, effects. Sorafenib-inhibited RAF/MEK/ERK and STAT3 signaling and cyclinD1 expression may have induced the observed G1phase arrest and S phase reduction, thereby reducing the cells' sensitivity to 5-FU.
Cell Line, Tumor ; Cell Proliferation ; drug effects ; Cyclin D1 ; metabolism ; Drug Antagonism ; Fluorouracil ; pharmacology ; Humans ; Niacinamide ; analogs & derivatives ; pharmacology ; Phenylurea Compounds ; pharmacology ; STAT3 Transcription Factor ; metabolism ; Signal Transduction
5.Sorafenib and octreotide combination therapy can inhibit proliferation of and induce apoptosis in human hepatoma cells.
Zhao-Dong LI ; Yu LIU ; Yu LIAO ; Guo-Qing ZUO
Chinese Journal of Hepatology 2012;20(2):126-130
To investigate the effects of sorafenib and octreotide combination treatment on cellular proliferation and explore the underlying molecular mechanisms by using an in vitro cell culture system with the human hepatoma cell line, HepG2. HepG2 cells were treated with different concentrations of sorafenib and octreotide alone or in combination. Untreated HepG2 cells were used as controls. Treatment-induced cytotoxicity was determined with the cell counting kit-8 by Sigma-Aldrich, and rate of apoptosis was detected by flow cytometry. Fluorescent microscopy was used to observe rates of cell growth under the various treatments. Treatment-induced changes in protein expressions were detected by enzyme-linked immunosorbent assay (for vascular endothelial growth factor (VEGF)) and Western blotting (for the Mcl-1 apoptosis mediator and the ERK1/2 and PERK1/2 kinases). Sorafenib and octreotide, used alone or in combination, inhibited proliferation and induced apoptosis in HepG2 cells. Combination treatment was more effective than either mono-treatment (F = 200.398, P less than 0.05). Fluorescent microscopy showed that combination treatment stimulated phosphatidylserine, the marker of early apoptosis, better than either mono-treatment. VEGF expression in cultures exposed to combination treatment was also significantly lower than in mono-treatment or untreated control cultures (F = 1019.725, P less than 0.05). Western blotting showed that octreotide mono-treatment had no effect on Mcl-1 expression (vs. control group; P more than 0.05) and that combination treatment significantly lowered Mcl-1 expression (vs. mono-treatment and control groups; P less than 0.05). None of the treatments affected ERK1/2 expression (all, P more than 0.05), while all treatments significantly lowered PERK1/2 expression (vs. control group; F = 2.401, P less than 0.05) and the combination treatment lowered PERK1/2 significantly more than either mono-treatment (P less than 0.05). Sorafenib and octreotide can inhibit proliferation and induce apoptosis in the human hepatoma cell line, HepG2. Combination treatment is significantly more efficacious (P less than 0.05) and produced synergistic effects. The mechanism underlying this phenomenon may depend on synergistic inhibition of VEGF, the anti-apoptotic protein Mcl-1, and the proliferation-inducing PERK1/2.
Apoptosis
;
drug effects
;
Benzenesulfonates
;
pharmacology
;
Cell Proliferation
;
drug effects
;
Hep G2 Cells
;
drug effects
;
Humans
;
Niacinamide
;
analogs & derivatives
;
Octreotide
;
pharmacology
;
Phenylurea Compounds
;
Pyridines
;
pharmacology
6.Synthesis and antimicrobial activity of N- 5-(3-pyridyl)-1, 3, 4-thiadiazol-2-yl -N'-aroyl urea.
Xing-Gao DONG ; Ling YAN ; Xin-Jian SONG ; Yin-Xiang DU
Acta Pharmaceutica Sinica 2007;42(1):108-110
To synthesize and evaluate antimicrobial activity of novel heterocyclic compounds, the corresponding title aroyl ureas have been synthesized by the reaction of 2-amino-5-(3-pyridyl)-1, 3, 4-thiadiazole with aroyl isocyanates. Their antimicrobial activities in vitro were tested by disk diffusion methods and broth microdilution according to M-27A protocol recommended by NCCLS. Twelve new compounds were obtained, and their structures were confirmed by MS, IR, 1H NMR and elemental analysis. The biological screening tests showed that most of the compounds have some antifungal activities in vitro. Aroyl ureas incorporating pyridyl thiadiazole ring may be developed as novel antifungal candidate drugs and are worthwhile to be further studied.
Antifungal Agents
;
chemical synthesis
;
chemistry
;
pharmacology
;
Candida albicans
;
drug effects
;
Microbial Sensitivity Tests
;
Molecular Structure
;
Phenylurea Compounds
;
chemical synthesis
;
chemistry
;
pharmacology
;
Thiadiazoles
;
chemical synthesis
;
chemistry
;
pharmacology
7.Effects of Paclitaxel and Quizartinib Alone and in Combination on AML Cell Line MV4-11 and Its STAT5 Signal Pathway.
Zi-Wen BAI ; Mei-Qing WU ; Bao-Wen ZHOU ; Ze-Yan SHI ; Yi-Bin YAO ; Zhen-Fang LIU ; Ru-Li PANG ; Wei-Hua ZHAO
Journal of Experimental Hematology 2022;30(3):671-676
OBJECTIVE:
To investigate the effects of paclitaxel, quizartinib and their combination on proliferation, apoptosis and FLT3/STAT5 pathway of human leukemia cell line MV4-11 (FLT3-ITD+).
METHODS:
MV4-11 cells were treated with paclitaxel and quizartinib at different concentrations for 24 h, 48 h and 72 h, respectively, and then the two drugs were combined at 48 h to compare the inhibition of proliferation, the apoptosis rate was detected by flow cytometry, the expression of FLT3 and STAT5 mRNA was determined by fluorescence quantitative PCR, and the protein expression of FLT3, p-FLT3, STAT5 and p-STAT5 was determined by Western blot.
RESULTS:
Different combination groups of paclitaxel and quizartinib had synergistic inhibitory effect. The cell survival rate in the combination group was significantly lower than that in the single drug group (P<0.05). The cell apoptosis rate in the combination group was significantly higher than that in the single drug group (P<0.001). The expression of FLT3 mRNA in combination group was significantly higher than that in two single drugs (P<0.01). The expression of STAT5 mRNA in combination group was significantly higher than that in quizartinib group (P<0.001); increased compared with paclitaxel group, but there was no statistical significance. The expression level of p-FLT3、p-STAT5 protein in the combination group was significantly lower than that in the single drug group (P<0.05, P<0.05).
CONCLUSION
Paclitaxel combined with quizartinib can synergistically inhibit the proliferation of MV4-11 cell line and promote the apoptosis of MV4-11 cell line by inhibiting the activity of FLT3/STAT5 pathway.
Apoptosis
;
Benzothiazoles
;
Cell Line, Tumor
;
Humans
;
Leukemia, Myeloid, Acute/genetics*
;
Paclitaxel/therapeutic use*
;
Phenylurea Compounds
;
RNA, Messenger
;
STAT5 Transcription Factor/pharmacology*
;
Signal Transduction
;
fms-Like Tyrosine Kinase 3
8.Effect of forchlorfenuron on fruit morphology and lignans content of Schisandra chinensis.
Xin SONG ; Pu DING ; Xian-Kuan LI ; Ting CHEN ; Liang CHEN ; Bing WANG
China Journal of Chinese Materia Medica 2014;39(9):1579-1583
The effect of plant growth regulator forchlorfenuron (CPPU) 1 x 10(-6), 0.67 x 10(-6), 0.5 x 10(-6) on fruit morphology and effective components lignans was studied. Those morphologies were the combination of four basic morphological changes. The result showed, diametre were increased and longitudinal diametre of fruits were inhibited by foliage fertilizers including CPPU. At the same time, 1 000-grain weight and yield showed the varying degrees increase under CPPU. The order of the degree was 0.5 x 10(-6) > 1 x 10(-6) > 0.67 x 10(-6). Six lignans content of Schisandra chinensis of different harvest time and different CPPU processing groups were determined, the results showed that lignans accumulation occurred mainly in periods of premature the half mature fruiting stages. Under the 0.67 x 10(-6) CPPU treatment, schisandrol B, schisandrin B, schisandrin C content of S. chinensis showed different increase.
Chromatography, High Pressure Liquid
;
Cyclooctanes
;
analysis
;
metabolism
;
Dioxoles
;
analysis
;
metabolism
;
Dose-Response Relationship, Drug
;
Fruit
;
drug effects
;
growth & development
;
metabolism
;
Lignans
;
analysis
;
metabolism
;
Phenylurea Compounds
;
pharmacology
;
Polycyclic Compounds
;
analysis
;
metabolism
;
Pyridines
;
pharmacology
9.Synthesis and biological evaluation of sorafenib thiourea derivatives.
Zhao YANG ; Zheng FANG ; Zhi-xiang WANG ; Ping WEI
Acta Pharmaceutica Sinica 2011;46(9):1093-1097
Basing on the market multi-target antitumor agent sorafenib, a series of sixteen 4-[4-(2-methyl-aminoacyl-pyridyl)]oxylphenyl aryl thiourea derivatives were designed and synthesized. Their structures were identified by the spectra of 1H NMR, MS and elemental analysis. The evaluation of antitumor bioactivities in vitro was done by MTT method. It was shown that the synthesized compounds had antitumor activities and compounds 1a, 1d, 1i and 1j showed better or equal antitumor activity on sorafenib.
Antineoplastic Agents
;
chemical synthesis
;
chemistry
;
pharmacology
;
Cell Line, Tumor
;
Cell Proliferation
;
drug effects
;
Humans
;
Molecular Structure
;
Niacinamide
;
analogs & derivatives
;
chemical synthesis
;
chemistry
;
pharmacology
;
Phenylurea Compounds
;
chemical synthesis
;
chemistry
;
pharmacology
;
Thiourea
;
analogs & derivatives
;
chemical synthesis
;
chemistry
;
pharmacology
10.Impact of TDZ and NAA on adventitious bud induction and cluster bud multiplication in Tulipa edulis.
Li-Fang ZHU ; Chao XU ; Zai-Biao ZHU ; He-Tong YANG ; Qiao-Sheng GUO ; Hong-jian XU ; Hong-Jian MA ; Gui-Hua ZHAO
China Journal of Chinese Materia Medica 2014;39(16):3030-3035
To explore the method of explants directly induced bud and establish the tissue culture system of mutiple shoot by means of direct organogenesis, core bud and daughter bulbs (the top of bud stem expanded to form daughter bulb) of T. edulis were used as explants and treated with thidiazuron (TDZ) and 1-naphthlcetic acid (NAA). The results showed that the optimal medium for bud inducted form core bud and daughter bulb were MS + TDZ 2.0 mg x L(-1) + NAA 4.0 mg x L(-1) and MS +TDZ 2.0 mg x L(-1) + NAA 2.0 mg x L(-1) respectively, both of them had a bud induction rate of 72.92%, 79.22%. The optimal medium for cluster buds multiplication was MS + TDZ 0.2 mg x L(-1) + NAA 0.2 mg x L(-1), and proliferation coefficient was 2.23. After proliferation, cluster buds rooting occurred on MS medium with IBA 1.0 mg x L(-1) and the rooting rate was 52.6%, three to five seedlings in each plant. Using core bud and daughter bulb of T. edulis, the optimum medium for adventitious bud directly inducted from daughter bulb, core bud and cluster bud multiplication were screened out and the tissue culture system of multiple shoot by means of direct organogenesis was established.
Naphthaleneacetic Acids
;
pharmacology
;
Phenylurea Compounds
;
pharmacology
;
Plant Growth Regulators
;
pharmacology
;
Plant Shoots
;
drug effects
;
growth & development
;
Plant Stems
;
drug effects
;
growth & development
;
Seedlings
;
drug effects
;
growth & development
;
Thiadiazoles
;
pharmacology
;
Tissue Culture Techniques
;
Tulipa
;
drug effects
;
growth & development