1.Spherical measurement-based analysis of gradient nonlinearity in magnetic resonance imaging.
Xiaoli YANG ; Zhaolian WANG ; Qian WANG ; Yiting ZHANG ; Zixuan SONG ; Yuchang ZHANG ; Yafei QI ; Xiaopeng MA
Journal of Biomedical Engineering 2025;42(1):174-180
The gradient field, one of the core magnetic fields in magnetic resonance imaging (MRI) systems, is generated by gradient coils and plays a critical role in spatial encoding and the generation of echo signals. The uniformity or linearity of the gradient field directly impacts the quality and distortion level of MRI images. However, traditional point measurement methods lack accuracy in assessing the linearity of gradient fields, making it difficult to provide effective parameters for image distortion correction. This paper introduced a spherical measurement-based method that involved measuring the magnetic field distribution on a sphere, followed by detailed magnetic field calculations and linearity analysis. This study, applied to assess the nonlinearity of asymmetric head gradient coils, demonstrated more comprehensive and precise results compared to point measurement methods. This advancement not only strengthens the scientific basis for the design of gradient coils but also provides more reliable parameters and methods for the accurate correction of MRI image distortions.
Magnetic Resonance Imaging/instrumentation*
;
Humans
;
Image Processing, Computer-Assisted/methods*
;
Nonlinear Dynamics
;
Magnetic Fields
;
Algorithms
;
Phantoms, Imaging
2.Development and evaluation of a positioning system for radiotherapy patient based on structured light surface imaging.
Yungang WANG ; Gongsen ZHANG ; Xianrui YAN ; Guangjie YANG ; Wei WANG ; Jian ZHU ; Linlin WANG
Journal of Biomedical Engineering 2025;42(2):237-245
This paper aims to propose a noninvasive radiotherapy patient positioning system based on structured light surface imaging, and evaluate its clinical feasibility. First, structured light sensors were used to obtain the panoramic point clouds during radiotherapy positioning in real time. The fusion of different point clouds and coordinate transformation were realized based on optical calibration and pose estimation, and the body surface was segmented referring to the preset region of interest (ROI). Then, the global-local registration of cross-source point cloud was achieved based on algorithms such as random sample consensus (RANSAC) and iterative closest point (ICP), to calculate 6 degrees of freedom (DoF) positioning deviation and provide guidance for the correction of couch shifts. The evaluation of the system was carried out based on a rigid adult phantom and volunteers' body, which included positioning error, correlation analysis, and receiver operating characteristic (ROC) analysis. Using Cone Beam CT (CBCT) as the gold standard, the maximum translation and rotation errors of this system were (1.5 ± 0.9) mm along Vrt direction (chest) and (0.7 ± 0.3) ° along Pitch direction (head and neck). The Pearson correlation coefficient between results of system outputs and CBCT verification distributed in an interval of [0.80, 0.84]. Results of ROC analysis showed that the translational and rotational AUC values were 0.82 and 0.85, respectively. In the 4D freedom accuracy test on the human body of volunteers, the maximum translation and rotation errors were (2.6 ± 1.1) mm (Vrt direction, chest and abdomen) and (0.8 ± 0.4)° (Rtn direction, chest and abdomen) respectively. In summary, the positioning system based on structured light body surface imaging proposed in this article can ensure positioning accuracy without surface markers and additional doses, and is feasible for clinical application.
Humans
;
Patient Positioning/methods*
;
Phantoms, Imaging
;
Cone-Beam Computed Tomography
;
Algorithms
;
Radiotherapy, Image-Guided/methods*
;
Radiotherapy Planning, Computer-Assisted/methods*
3.A method for determining spatial resolution of phantom based on automatic contour delineation.
Ying LIU ; Minghao SUN ; Haowei ZHANG ; Haikuan LIU
Journal of Biomedical Engineering 2025;42(2):263-271
In this study, we propose an automatic contour outlining method to measure the spatial resolution of homemade automatic tube current modulation (ATCM) phantom by outlining the edge contour of the phantom image, selecting the region of interest (ROI), and measuring the spatial resolution characteristics of computer tomography (CT) phantom image. Specifically, the method obtains a binarized image of the phantom outlined by an automated fast region convolutional neural network (AFRCNN) model, measures the edge spread function (ESF) of the CT phantom with different tube currents and layer thicknesses, and differentiates the ESF to obtain the line spread function (LSF). Finally, the values passing through the zeros are normalized by the Fourier transform to obtain the CT spatial resolution index (RI) for the automatic measurement of the modulation transfer function (MTF). In this study, this algorithm is compared with the algorithm that uses polymethylmethacrylate (PMMA) to measure the MTF of the phantom edges to verify the feasibility of this method, and the results show that the AFRCNN model not only improves the efficiency and accuracy of the phantom contour outlining, but also is able to obtain a more accurate spatial resolution value through automated segmentation. In summary, the algorithm proposed in this study is accurate in spatial resolution measurement of phantom images and has the potential to be widely used in real clinical CT images.
Phantoms, Imaging
;
Tomography, X-Ray Computed/instrumentation*
;
Algorithms
;
Neural Networks, Computer
;
Image Processing, Computer-Assisted/methods*
;
Humans
;
Polymethyl Methacrylate
4.Analysis of the Influence of Different Scanning Conditions of Medical Linear Accelerator CBCT on Image Quality.
Li LIU ; Chengwei YE ; Jianjun YUAN ; Yingui LUO ; Zhiyao LUO ; Wei ZENG ; Ling LI ; Huan LIU ; Yan LIU
Chinese Journal of Medical Instrumentation 2025;49(2):176-180
OBJECTIVE:
To investigate the influence of different scanning conditions on the image quality of medical electron accelerator cone-beam computed tomography (CBCT) and provide a reference for the selection of scanning conditions for different body parts. Methods Set different scanning conditions, the Catphan 503 phantom was scanned using CBCT parameters to analyze the influence of spatial resolution, noise, uniformity, spatial geometric accuracy, and low-contrast resolution on the image quality of CBCT.
RESULTS:
For the head, chest, and abdomen, with the increase in scanning parameter values, the noise value decreased by 47.4%, 26.1%, and 51.3% respectively, and the uniformity values decreased by 30.2%, 26.6%, and 47.9% respectively. The low-contrast resolution values decreased by 50.6%, 34.2%, and 12.0%. The influence of different scanning conditions on spatial geometric accuracy and spatial resolution is not significant.
CONCLUSION
Different scanning parameters have a certain influence on the image quality of medical electron accelerator CBCT. Lower scanning parameters can be selected based on individual patients to reduce the additional radiation dose, providing a reference for the safe application of CBCT image guidance in radiotherapy.
Cone-Beam Computed Tomography/instrumentation*
;
Phantoms, Imaging
;
Particle Accelerators
5.Performance Testing of Medical Ultrasound Diagnostic Equipment Based on Tissue-Mimicking Phantom.
Hao LIU ; Longyang JIA ; Ruiyao JIANG
Chinese Journal of Medical Instrumentation 2025;49(3):308-312
This study aims to ensure the effectiveness of medical ultrasound diagnostic equipment in clinical applications by testing multiple key performance indicators using tissue-mimicking phantoms and exploring the changes in these performance indicators over time. Firstly, 17 in-service medical ultrasound diagnostic equipments were selected, and their depth of penetration, dead zone, lateral resolution, axial resolution, geometric position error, and cystic focal diameter error were tested according to the verification regulations. In addition, the study retrospectively analyzed the performance testing data of 19 medical ultrasound diagnostic equipments over the past three consecutive years and conducted statistical analysis. Through the testing, all performance indicators of the 17 equipments met the requirements of the verification regulations, indicating that they can stably and reliably provide high-quality ultrasound diagnostic images and data in clinical applications. Meanwhile, retrospective data showed that with the increase with the increase in service life, the resolving ability at the far field of the 19 equipments decreased, and the cystic focal diameter error increased. Therefore, it is recommended that medical institutions establish a regular testing and maintenance system for medical ultrasound diagnostic equipment, conducting regular performance evaluations and maintenance to ensure its good working condition.
Phantoms, Imaging
;
Ultrasonography/instrumentation*
;
Retrospective Studies
6.Development of Synchronous Arbitrary Gate-PW Doppler for Ultrasound Microvascular Imaging and Preliminary Validation.
Chao LI ; Lanxi XIANG ; Yigang DU ; Zhilan ZHENG ; Shuangshuang LI
Chinese Journal of Medical Instrumentation 2025;49(4):355-362
Ultra micro angiography (UMA) can effectively improve the sensitivity and spatial resolution of blood flow imaging. To further meet the clinical requirements of quantitative measurements for microvascular imaging, this article demonstrated technical features and performance verification results of the microflow quantitative analysis function, which was developed based on the UMA function. This article provided preliminary validation of the measurement of Synchronous Arbitrary Gate-PW (SAG-PW) using a Doppler flow phantom and a moving string phantom. The Doppler flow phantom results demonstrated that the SAG-PW measurement values were close to the traditional PW results, and the average error of multiple sets of measurement results under different conditions was 3.9%. The results of SAG-PW and PW were strongly linearly correlated, with the slope and correlation coefficient approaching 1. The results of the moving string phantom demonstrated that the relative errors of TAMean and SAG-PW with different phantom set values were within 10%.
Phantoms, Imaging
;
Ultrasonography, Doppler/instrumentation*
;
Microvessels/diagnostic imaging*
7.Estimation of Primary Electron Beam Parameters of Individual Linear Accelerator Using Monte Carlo Method.
Yisong HE ; Hang YU ; Yuchuan FU ; Jinyou HU ; Lian ZOU
Chinese Journal of Medical Instrumentation 2025;49(4):375-382
OBJECTIVE:
To estimate the primary electron beam parameters (PEB), including energy, radial intensity distribution and average angular divergence, of the individual linear accelerator using the Monte Carlo method.
METHODS:
A model of the treatment head and a standard field were built by BEAMnrc, and the dose distribution was simulated in water phantoms by DOSXYZnrc to obtain the percentage depth dose curve and off-axis ratio. By debugging the parameters mentioned above until the simulation and measurement results could match.
RESULTS:
The simulation and measurement results could achieve the best match when the parameters mentioned above were 6.25 MeV, 0.95 mm and 0.1° respectively.
CONCLUSION
The PEB of a linear accelerator could have a significant impact on the output beam characteristics. Monte Carlo estimation is one of the most crucial steps in establishing an individual linear accelerator model.
Monte Carlo Method
;
Particle Accelerators
;
Electrons
;
Radiotherapy Dosage
;
Phantoms, Imaging
8.Quantitative Analysis of the Impact of Various iCBCTs on the Image Quality of Lung Adaptive Radiotherapy.
Ruifeng ZHAO ; Bin SU ; Xiaofei JIANG
Chinese Journal of Medical Instrumentation 2025;49(4):423-428
OBJECTIVE:
To investigate the impact of different iterative cone beam CT (iCBCT) scanning beam currents from a ring-mounted linac on synthetic CT image quality for lung adaptive radiotherapy under lung scanning protocol.
METHODS:
The CIRS lung motion phantom was configured to simulate conventional respiratory motion pattern, followed by 4D-CT simulation. After transferring the radiotherapy plan to the ring-mounted Halcyon 3.0 linac, three groups of typical iCBCT scans with different beam currents [ I low (160 mA), I middle (282 mA), and I high (491 mA)] were performed and corresponding image reconstructions were completed. Synthetic CT (sCT) images were subsequently obtained based on the deformable registration algorithm.
RESULTS:
Compared to the corresponding CBCT images, the sCT images exhibited a significant reduction in artifacts. The fine structure of the planning CT (pCT) image was preserved for sCT images corresponding to different scanning beam currents, with Dice similarity coefficients exceeding 0.90 for all cases.
CONCLUSION
The image quality of sCT corresponding to different iCBCTs is comparable to that of pCT, and changes in iCBCT beam parameters have a negligible impact on sCT image quality. Taking into account both image quality and imaging dose factors associated with the beam currents, iCBCT with a lower beam current on the ring-mounted Halcyon linac offers greater clinical value in lung adaptive radiotherapy.
Cone-Beam Computed Tomography/methods*
;
Phantoms, Imaging
;
Humans
;
Radiotherapy Planning, Computer-Assisted/methods*
;
Lung/diagnostic imaging*
;
Lung Neoplasms/diagnostic imaging*
9.Study on Evaluation Method for Effectiveness of Local Physical Cooling Devices Based on Human Body Simulation Phantoms.
Guojuan YANG ; Dongping PAN ; Qingze LYU
Chinese Journal of Medical Instrumentation 2025;49(5):579-584
At present, research on the efficacy of local physical cooling devices is mainly based on clinical observation, but there is relatively little research on evaluating the effectiveness of local cold therapy cooling and the penetration depth. This study is based on the research of the structure and morphology of local muscle tissue in the human body, as well as the heat transfer characteristics and mechanisms of the human body. A simulation phantom of human muscle tissue under temperature cycling was created, and the differences in evaluating the effectiveness of local cold therapy between the human body and the simulation phantom were compared. This provides a new evaluation method for evaluating the cooling effectiveness of local physical cooling equipment.
Humans
;
Phantoms, Imaging
;
Hypothermia, Induced/methods*
10.A low-dose CT reconstruction method using sub-pixel anisotropic diffusion.
Shizhou TANG ; Ruolan SU ; Shuting LI ; Zhenzhen LAI ; Jinhong HUANG ; Shanzhou NIU
Journal of Southern Medical University 2025;45(1):162-169
OBJECTIVES:
We present a new low-dose CT reconstruction method using sub-pixel and anisotropic diffusion.
METHODS:
The sub-pixel intensity values and their second-order differences were obtained using linear interpolation techniques, and the new gradient information was then embedded into an anisotropic diffusion process, which was introduced into a penalty-weighted least squares model to reduce the noise in low-dose CT projection data. The high-quality CT image was finally reconstructed using the classical filtered back-projection (FBP) algorithm from the estimated data.
RESULTS:
In the Shepp-Logan phantom experiments, the structural similarity (SSIM) index of the CT image reconstructed by the proposed algorithm, as compared with FBP, PWLS-Gibbs and PWLS-TV algorithms, was increased by 28.13%, 5.49%, and 0.91%, the feature similarity (FSIM) index was increased by 21.08%, 1.78%, and 1.36%, and the root mean square error (RMSE) was reduced by 69.59%, 18.96%, and 3.90%, respectively. In the digital XCAT phantom experiments, the SSIM index of the CT image reconstructed by the proposed algorithm, as compared with FBP, PWLS-Gibbs and PWLS-TV algorithms, was increased by 14.24%, 1.43% and 7.89%, the FSIM index was increased by 9.61%, 1.78% and 5.66%, and the RMSE was reduced by 26.88%, 9.41% and 18.39%, respectively. In clinical experiments, the SSIM index of the image reconstructed using the proposed algorithm was increased by 19.24%, 15.63% and 3.68%, the FSIM index was increased by 4.30%, 2.92% and 0.43%, and the RMSE was reduced by 44.60%, 36.84% and 15.22% in comparison with FBP, PWLS-Gibbs and PWLS-TV algorithms, respectively.
CONCLUSIONS
The proposed method can effectively reduce the noises and artifacts while maintaining the structural details in low-dose CT images.
Tomography, X-Ray Computed/methods*
;
Algorithms
;
Phantoms, Imaging
;
Anisotropy
;
Image Processing, Computer-Assisted/methods*
;
Humans
;
Radiation Dosage

Result Analysis
Print
Save
E-mail