1.Lean mass and peak bone mineral density
Huy G. NGUYEN ; Minh TD. PHAM ; Lan T. HO-PHAM ; Tuan V. NGUYEN
Osteoporosis and Sarcopenia 2020;6(4):212-216
Objectives:
The association between body composition parameters and peak bone mineral density is not well documented. The aim of this study is to assess the relative contributions of lean mass and fat mass on peak bone mineral density (BMD).
Methods:
The study involved 416 women and 334 men aged between 20 and 30 years who were participants in the population-based Vietnam Osteoporosis Study. Whole body composition parameters (eg, fat mass and lean mass) and BMD at the lumbar spine and femoral neck were measured by dual-energy X-ray absorptiometry. The association between lean mass and fat mass and BMD was analyzed by the linear regression model using the Least Absolute Shrinkage and Selection Operator (LASSO).
Results:
Peak BMD in men was higher than women, and the difference was more pronounced at the femoral neck (average difference: 0.123 g/㎠; 95% confidence interval [CI] 0.105–0.141 g/㎠) than at the lumbar spine (average difference 0.019 g/㎠; 95% CI, 0.005–0.036 g/㎠). Results of LASSO regression indicated that lean mass was the only predictor of BMD for either men or women. Each kilogram increase in lean mass was associated with ∼0.01 g/㎠ increase in BMD. Lean mass alone explained 16% and 36% of variation in lumbar spine and femoral neck BMD, respectively.
Conclusions
Lean mass, not fat mass, is the main determinant of peak bone mineral density. This finding implies that good physical activity during adulthood can contribute to the maximization of peak bone mass during adulthood.
2.Lean mass and peak bone mineral density
Huy G. NGUYEN ; Minh TD. PHAM ; Lan T. HO-PHAM ; Tuan V. NGUYEN
Osteoporosis and Sarcopenia 2020;6(4):212-216
Objectives:
The association between body composition parameters and peak bone mineral density is not well documented. The aim of this study is to assess the relative contributions of lean mass and fat mass on peak bone mineral density (BMD).
Methods:
The study involved 416 women and 334 men aged between 20 and 30 years who were participants in the population-based Vietnam Osteoporosis Study. Whole body composition parameters (eg, fat mass and lean mass) and BMD at the lumbar spine and femoral neck were measured by dual-energy X-ray absorptiometry. The association between lean mass and fat mass and BMD was analyzed by the linear regression model using the Least Absolute Shrinkage and Selection Operator (LASSO).
Results:
Peak BMD in men was higher than women, and the difference was more pronounced at the femoral neck (average difference: 0.123 g/㎠; 95% confidence interval [CI] 0.105–0.141 g/㎠) than at the lumbar spine (average difference 0.019 g/㎠; 95% CI, 0.005–0.036 g/㎠). Results of LASSO regression indicated that lean mass was the only predictor of BMD for either men or women. Each kilogram increase in lean mass was associated with ∼0.01 g/㎠ increase in BMD. Lean mass alone explained 16% and 36% of variation in lumbar spine and femoral neck BMD, respectively.
Conclusions
Lean mass, not fat mass, is the main determinant of peak bone mineral density. This finding implies that good physical activity during adulthood can contribute to the maximization of peak bone mass during adulthood.
3.The Vietnam Osteoporosis Study: Rationale and design.
Osteoporosis and Sarcopenia 2017;3(2):90-97
OBJECTIVES: Osteoporosis and fracture impose a significant health care burden on the contemporary populations in developing countries. The Vietnam Osteoporosis Study (VOS) sought to assess the burden of osteoporosis and its comorbidities in men and women. METHODS: The study was designed as a population-based family investigation in which families were randomly recruited from Ho Chi Minh City, Vietnam. Individuals were assessed for bone health, including bone mineral density (BMD) and body composition and trabecular and cortical bone properties by pQCT (peripheral quantitative computed tomography). Fasting blood samples were obtained for the analysis of plasma glucose, glycosylated hemoglobin, and bone turnover markers. Genomic DNA extraction from whole blood samples for further genetic and genomic analyses. RESULTS: We have recruited more than 4157 individuals from 817 families. The average age of participants was 51, with approximately 45% of the individuals aged 50 years and older. Approximately 3% of participants were obese (body mass index ≥ 30 kg/m²), and 21% were overweight. Notably, 11% of participants aged 40 years and older were diabetic. Among those aged 50 years and older, approximately 14% of women and 5% of men had osteoporosis (i.e., femoral neck BMD T-scores ≤−2.5). There were modest correlations between volumetric BMD and areal BMD. CONCLUSIONS: VOS is a major bone research project in Vietnam aimed at comprehensively documenting the burden osteoporosis, its co-occurrence of chronic diseases, and their underlying etiologies. The Study will make important contributions to the literature of bone health worldwide.
Blood Glucose
;
Body Composition
;
Bone Density
;
Bone Remodeling
;
Chronic Disease
;
Comorbidity
;
Delivery of Health Care
;
Developing Countries
;
DNA
;
Fasting
;
Female
;
Femur Neck
;
Hemoglobin A, Glycosylated
;
Humans
;
Male
;
Muscle Strength
;
Osteoporosis*
;
Overweight
;
Sarcopenia
;
Vietnam*
4.Discordance between quantitative ultrasound and dual-energy X-ray absorptiometry in bone mineral density: The Vietnam Osteoporosis Study
Huy G. NGUYEN ; Khanh B. LIEU ; Thao P. HO-LE ; Lan T. HO-PHAM ; Tuan V. NGUYEN
Osteoporosis and Sarcopenia 2021;7(1):6-10
Objectives:
Calcaneal quantitative ultrasound measurement (QUS) has been considered an alternative to dual-energy X-ray absorptiometry (DXA) based bone mineral density (BMD) for assessing bone health. This study sought to examine the utility of QUS as an osteoporosis screening tool by evaluating the correlation between QUS and DXA.
Methods:
The study was a part of the Vietnam Osteoporosis Study that involved 1270 women and 773 men aged 18 years and older. BMD at the femoral neck, total hip and lumbar spine was measured using DXA. Osteoporosis was diagnosed based on the femoral neck T-score using World Health Organization criteria. Broadband ultrasound attenuation (BUA) at the calcaneus was measured by QUS. The concordance between BUA and BMD was analyzed by the linear regression model.
Results:
In all individuals, BUA modestly correlated with femoral neck BMD (r = 0.35; P < 0.0001) and lumbar spine BMD (r = 0.34; P < 0.0001) in both men and women. In individuals aged 50 years and older, approximately 16% (n = 92/575) of women and 3.2% (n = 10/314) of men were diagnosed to have osteoporosis. Only 0.9% (n = 5/575) women and 1.0% (n = 3/314) men were classified as “Low BUA”. The kappa coefficient of concordance between BMD and BUA classification was 0.09 (95% CI, 0.04 to 0.15) for women and 0.12 (95% CI, 0.03 to 0.22) for men.
Conclusions
In this population-based study, QUS BUA modestly correlated with DXA BMD, suggesting that BUA is not a reliable method for screening of osteoporosis.
5.Discordance between quantitative ultrasound and dual-energy X-ray absorptiometry in bone mineral density: The Vietnam Osteoporosis Study
Huy G. NGUYEN ; Khanh B. LIEU ; Thao P. HO-LE ; Lan T. HO-PHAM ; Tuan V. NGUYEN
Osteoporosis and Sarcopenia 2021;7(1):6-10
Objectives:
Calcaneal quantitative ultrasound measurement (QUS) has been considered an alternative to dual-energy X-ray absorptiometry (DXA) based bone mineral density (BMD) for assessing bone health. This study sought to examine the utility of QUS as an osteoporosis screening tool by evaluating the correlation between QUS and DXA.
Methods:
The study was a part of the Vietnam Osteoporosis Study that involved 1270 women and 773 men aged 18 years and older. BMD at the femoral neck, total hip and lumbar spine was measured using DXA. Osteoporosis was diagnosed based on the femoral neck T-score using World Health Organization criteria. Broadband ultrasound attenuation (BUA) at the calcaneus was measured by QUS. The concordance between BUA and BMD was analyzed by the linear regression model.
Results:
In all individuals, BUA modestly correlated with femoral neck BMD (r = 0.35; P < 0.0001) and lumbar spine BMD (r = 0.34; P < 0.0001) in both men and women. In individuals aged 50 years and older, approximately 16% (n = 92/575) of women and 3.2% (n = 10/314) of men were diagnosed to have osteoporosis. Only 0.9% (n = 5/575) women and 1.0% (n = 3/314) men were classified as “Low BUA”. The kappa coefficient of concordance between BMD and BUA classification was 0.09 (95% CI, 0.04 to 0.15) for women and 0.12 (95% CI, 0.03 to 0.22) for men.
Conclusions
In this population-based study, QUS BUA modestly correlated with DXA BMD, suggesting that BUA is not a reliable method for screening of osteoporosis.
6.DPHL:A DIA Pan-human Protein Mass Spectrometry Library for Robust Biomarker Discovery
Zhu TIANSHENG ; Zhu YI ; Xuan YUE ; Gao HUANHUAN ; Cai XUE ; Piersma R. SANDER ; Pham V. THANG ; Schelfhorst TIM ; Haas R.G.D. RICHARD ; Bijnsdorp V. IRENE ; Sun RUI ; Yue LIANG ; Ruan GUAN ; Zhang QIUSHI ; Hu MO ; Zhou YUE ; Winan J. Van Houdt ; Tessa Y.S. Le Large ; Cloos JACQUELINE ; Wojtuszkiewicz ANNA ; Koppers-Lalic DANIJELA ; B(o)ttger FRANZISKA ; Scheepbouwer CHANTAL ; Brakenhoff H. RUUD ; Geert J.L.H. van Leenders ; Ijzermans N.M. JAN ; Martens W.M. JOHN ; Steenbergen D.M. RENSKE ; Grieken C. NICOLE ; Selvarajan SATHIYAMOORTHY ; Mantoo SANGEETA ; Lee S. SZE ; Yeow J.Y. SERENE ; Alkaff M.F. SYED ; Xiang NAN ; Sun YAOTING ; Yi XIAO ; Dai SHAOZHENG ; Liu WEI ; Lu TIAN ; Wu ZHICHENG ; Liang XIAO ; Wang MAN ; Shao YINGKUAN ; Zheng XI ; Xu KAILUN ; Yang QIN ; Meng YIFAN ; Lu CONG ; Zhu JIANG ; Zheng JIN'E ; Wang BO ; Lou SAI ; Dai YIBEI ; Xu CHAO ; Yu CHENHUAN ; Ying HUAZHONG ; Lim K. TONY ; Wu JIANMIN ; Gao XIAOFEI ; Luan ZHONGZHI ; Teng XIAODONG ; Wu PENG ; Huang SHI'ANG ; Tao ZHIHUA ; Iyer G. NARAYANAN ; Zhou SHUIGENG ; Shao WENGUANG ; Lam HENRY ; Ma DING ; Ji JIAFU ; Kon L. OI ; Zheng SHU ; Aebersold RUEDI ; Jimenez R. CONNIE ; Guo TIANNAN
Genomics, Proteomics & Bioinformatics 2020;18(2):104-119
To address the increasing need for detecting and validating protein biomarkers in clinical specimens, mass spectrometry (MS)-based targeted proteomic techniques, including the selected reaction monitoring (SRM), parallel reaction monitoring (PRM), and massively parallel data-independent acquisition (DIA), have been developed. For optimal performance, they require the fragment ion spectra of targeted peptides as prior knowledge. In this report, we describe a MS pipe-line and spectral resource to support targeted proteomics studies for human tissue samples. To build the spectral resource, we integrated common open-source MS computational tools to assemble a freely accessible computational workflow based on Docker. We then applied the workflow to gen-erate DPHL, a comprehensive DIA pan-human library, from 1096 data-dependent acquisition (DDA) MS raw files for 16 types of cancer samples. This extensive spectral resource was then applied to a proteomic study of 17 prostate cancer (PCa) patients. Thereafter, PRM validation was applied to a larger study of 57 PCa patients and the differential expression of three proteins in prostate tumor was validated. As a second application, the DPHL spectral resource was applied to a study consisting of plasma samples from 19 diffuse large B cell lymphoma (DLBCL) patients and 18 healthy control subjects. Differentially expressed proteins between DLBCL patients and healthy control subjects were detected by DIA-MS and confirmed by PRM. These data demonstrate that the DPHL supports DIA and PRM MS pipelines for robust protein biomarker discovery. DPHL is freely accessible at https://www.iprox.org/page/project.html?id=IPX0001400000.