1.Preparation of colloidal gold test strips for the detection of antibodies to peste des petits ruminants based on monoclonal antibodies to N protein.
Shuai DONG ; Weiqin MENG ; Ling MO ; Jinlong CHEN ; Jingnan SHI ; Zhe YANG ; Tong LI ; Qianqian XU ; Zhiqiang SHEN ; Jianchai LIU ; Jinliang WANG
Chinese Journal of Biotechnology 2023;39(12):4915-4926
A simple, fast, and visual method for detecting antibodies against peste des petits ruminants virus (PPRV) using colloidal gold strips was developed. In this study, the pET-32a-N was transformed into Escherichia coli Rosetta (DE3) for expression. Hybridoma cell lines were generated by fusing SP2/0 myeloma cells with splenocytes from immunized mice with the expressed and purified N protein of PPRV. The PPRV N protein was labeled with colloidal gold particles as the gold-labeled antigen. The N protein served as the gold standard antigen and as the test (T) line-coated antigen, while the monoclonal antibody served as the quality control (C) line-coated antibody to assemble the colloidal gold immunochromatographic test strips for detecting antibodies against the N protein of PPRV. Hybridoma cell line designated as 1F1 was able to stably secrete the monoclonal antibody against the N protein of PPRV. The titer of 1F1 monoclonal antibody in ascites was 1:128 000 determined by indirect enzyme-linked immunosorbent assays (ELISA), and the immunoglobulin subtype of the monoclonal antibody was IgG1, with kappa chain. The obtained monoclonal antibody was able to specifically recognize the N protein of PPRV, as shown by Western blotting and indirect immunofluorescent assay (IFA). The developed colloidal gold test strip method was able to detect PPRV antibodies specifically, and there was no difference between different batches of the test strips. Testing of a total of 122 clinical sera showed that the compliance rate of the test strip with ELISA test was 97.6%.The test strip assay developed in this study has good specificity, reproducibility, and sensitivity, and it can be used for the rapid detection of PPRV antibodies.
Animals
;
Mice
;
Peste-des-Petits-Ruminants/prevention & control*
;
Antibodies, Monoclonal
;
Reproducibility of Results
;
Peste-des-petits-ruminants virus
;
Antibodies, Viral
;
Enzyme-Linked Immunosorbent Assay
;
Goats
2.Peste des petits ruminants virus detected in tissues from an Asiatic lion (Panthera leo persica) belongs to Asian lineage IV.
Vinayagamurthy BALAMURUGAN ; Arnab SEN ; Gnanavel VENKATESAN ; Vandana BHANOT ; Vineeta YADAV ; Veerakyathappa BHANUPRAKASH ; Raj Kumar SINGH
Journal of Veterinary Science 2012;13(2):203-206
In this study, peste des petits ruminants virus (PPRV) was detected in frozen pooled tissue samples from a dead Asiatic lion (Panthera leo persica). The samples were negative for canine distemper virus and positive for PPRV nucleic acids when tested with one-step RT-PCR using the appropriate virus-specific primers. Subsequent amplification, cloning, and sequencing of the partial nucleocapsid, matrix, and fusion genes confirmed the presence of PPRV nucleic acid. Comparative sequence and phylogenetic analyses of the structural genes of the isolated virus confirmed that the virus belonged to Asian lineage IV and was closely related to PPRV circulating in India.
Animals
;
Cloning, Molecular
;
*Lions
;
Peste-des-petits-ruminants virus/*genetics/*isolation & purification
;
Phylogeny
;
Reverse Transcriptase Polymerase Chain Reaction/veterinary
3.Construction and sequencing of full-length cDNA of peste des petits ruminants virus.
Jun-Jun ZHAI ; Yong-Xi DOU ; Hai-Rui ZHANG ; Li MAO ; Xue-Lian MENG ; Xuo-Nong LUO ; Xue-Peng CAI
Chinese Journal of Virology 2010;26(4):315-321
To develop a reverse genetics system of Peste des petits ruminants virus(PPRV), five pairs of oligonucleotide primers were designed on the basis of the full-length genomic sequence of PPRV Nigeria 75/ 1 strain. Using RT-PCR technique, five over-lapping cDNA fragments, designated as JF1, JF2, JF3, JF4 and JF5, respectively, were amplified, followed by cloning into pcDNA3.1(+)vector. An AscI restriction enzyme site and a T7 promoter sequence were introduced immediately upstream of 5'-end, while a PacI restriction enzyme site was engineered downstream of 3'-end. Using pok12 as a plasmid vector, the full-length cDNA clone pok12-PPRV of Nigeria 75/1 was assembled by connecting the five cDNA fragments via the unique restriction endonuclease site of PPRV genome. The resultant nucleotide sequence of the PPRV Nigeria 75/1 strain in the study was compared with other members of genus morbillivirus, and phylogenetic analysis was used to examine the evolutionary relationships. The results showed that PPRV Nigeria 75/ 1 was antigenically closely related to Rinderpest virus and Measles virus. Successful construction of full-length cDNA clone of PPRV Nigeria 75/1 strain lays the basis rescuing PPRV effectively and enables further research of PPRV at molecular level.
Animals
;
Base Sequence
;
Cloning, Molecular
;
DNA, Complementary
;
genetics
;
Genome, Viral
;
Molecular Sequence Data
;
Peste-des-Petits-Ruminants
;
virology
;
Peste-des-petits-ruminants virus
;
classification
;
genetics
;
Phylogeny
;
Sequence Analysis, DNA
4.Sample type is vital for diagnosing infection with peste des petits ruminants virus by reverse transcription PCR.
Pam Dachung LUKA ; Chrisostom AYEBAZIBWE ; David SHAMAKI ; Frank Norbert MWIINE ; Joseph ERUME
Journal of Veterinary Science 2012;13(3):323-325
Peste des petits ruminants (PPR) diagnosis from suspected samples from sheep and goats was carried out. Buffy coat, tissues, and oculo-nasal swabs were analyzed using nucleoprotein (NP3/NP4) and fusion protein (F1/F2) gene primers, respectively. Analysis of the sample types and primer set revealed that buffy coat are the best type of samples for PPR diagnosis and the use of two set of primers will increase the number of positives.
Animals
;
DNA Primers/analysis
;
Eye/virology
;
Goat Diseases/blood/*diagnosis/epidemiology/virology
;
Goats
;
Hair/virology
;
Nose/virology
;
Nucleoproteins/analysis
;
Peste-des-Petits-Ruminants/blood/*diagnosis/epidemiology/virology
;
Peste-des-petits-ruminants virus/genetics/*isolation & purification
;
Pigmentation
;
RNA, Viral/genetics/*isolation & purification
;
Reverse Transcriptase Polymerase Chain Reaction/*methods/standards/veterinary
;
Sheep
;
Sheep Diseases/blood/*diagnosis/epidemiology/virology
;
Uganda/epidemiology
5.Prevalence of peste des petits ruminants among sheep and goats in India.
Vinayagamurthy BALAMURUGAN ; Paramasivam SARAVANAN ; Arnab SEN ; Kaushal Kishor RAJAK ; Gnanavel VENKATESAN ; Paramanandham KRISHNAMOORTHY ; Veerakyathappa BHANUPRAKASH ; Raj Kumar SINGH
Journal of Veterinary Science 2012;13(3):279-285
This study measured the clinical prevalence of peste des petits ruminants (PPR) among sheep and goats in India between 2003 and 2009 by analyzing clinical samples from suspected cases of PPR that were submitted to the Rinderpest and Allied Disease Laboratory, Division of Virology, IVRI, Mukteswar for PPR diagnosis. PPR outbreaks were confirmed by detecting PPR virus (PPRV)-specific antigen in the clinical samples. Clinical samples (blood, nasal swabs, spleen, lymph node, kidney, liver, intestine, and pooled tissue materials) were taken from a total of 592 sheep and 912 goats in different states of India and screened for the presence of PPRV antigen using a monoclonal antibody-based sandwich ELISA kit. A total of 20, 38, and 11 laboratory-confirmed PPR outbreaks occurred among sheep, goat, and combined sheep and goat populations, respectively. Our findings provide evidence of widespread PPR endemicity in India. The underlying reasons could be variations in husbandry practices in different geographical regions, agro-climatic conditions, and livestock migration. Furthermore, decrease in the number of PPR outbreaks over time might be due to the effectiveness of current live PPR vaccines and timely vaccination of target species. Vaccination against PPR has been practiced in India since 2002 to control this disease.
Animals
;
Antibodies, Monoclonal/immunology
;
Antigens, Viral/*blood
;
Disease Outbreaks/*veterinary
;
Enzyme-Linked Immunosorbent Assay/veterinary
;
Goat Diseases/*epidemiology/immunology/prevention & control
;
Goats
;
India/epidemiology
;
Nucleocapsid Proteins/immunology
;
Peste-des-Petits-Ruminants/epidemiology/immunology/prevention & control/*veterinary
;
Peste-des-petits-ruminants virus/*immunology/isolation & purification
;
Prevalence
;
Risk Factors
;
Seasons
;
Sheep
;
Sheep Diseases/*epidemiology/immunology/prevention & control
;
Vaccination/veterinary
;
Viral Vaccines/*immunology/therapeutic use
6.Genome sequencing and analysis of a peste des petits ruminants virus isolate, China/Tib/07.
Wen-Hua LIU ; Jing-Yue BAO ; Xiao-Dong WU ; Zhi-Liang WANG
Chinese Journal of Virology 2010;26(4):322-329
Peste des petits ruminants virus is a member of Morbillivirus Paramyxoviridae. The complete genome of a Peste des petits ruminants virus (PPRV) isolate, China/Tib/07 was sequenced and molecular characteristics was analyzed. The internal sequences of the virus genome were amplified by RT-PCR with primers designed according to the published data in GenBank, while the sequences of the 3' and 5' ends of the genome were determined by RACE. Amplification products were directly sequenced,assembled and analyzed with DNAStar4.0. Results showed that China/Tib/07 genome consisted of 15 948 nucleotides in length, encoding six structural proteins and two non-structural proteins just like other known PPRV genomes. Phylogenetically, the virus genome shared homology of 91.6%-98.1% with Southwest Asian isolates among PPRV strains and the highest homology of 64.3% with rinderpest virus among morbillivirus members.
Animals
;
Base Sequence
;
Cercopithecus aethiops
;
China
;
Genome, Viral
;
Molecular Sequence Data
;
Peste-des-Petits-Ruminants
;
veterinary
;
virology
;
Peste-des-petits-ruminants virus
;
classification
;
genetics
;
isolation & purification
;
Phylogeny
;
Sequence Alignment
;
Sequence Analysis, DNA
;
Sheep
;
Sheep Diseases
;
virology
;
Vero Cells
;
Viral Proteins
;
genetics
7.Sequence analysis of the matrix protein and fusion protein genes of a field peste des petits ruminants virus strain from Tibet, China.
Jing-Yue BAO ; Wen-Ji ZHAO ; Zhi-Liang WANG ; Lin LI ; Guo-Zhen WU ; Xiao-Dong WU ; Chun-Ju LIU ; Jun-Wei WANG ; Yu-Tian LIU ; Jin-Ming LI ; Ying-Li WANG
Chinese Journal of Virology 2010;26(4):305-314
The nucleotide sequences of M and F genes from a field strain of peste des petits ruminants virus (PPRV) ("China/Tib/Gej/07-30") was firstly determined. The M gene was 1 483 nucleotides in length with a single open reading frame (ORF), encoding a protein of 335 amino acids. The F gene was 2411 nucleotides in length, encoding a protein of 546 amino acids. The resulting nucleotide sequence and the deduced amino acid sequences were compared with the homologous regions of other PPRV isolates. The nucleotide sequences of M and F genes of the "China/Tib/Gej/07-30" was 92.4%-97.7% and 85.5%-96.1% identical to other PPRV isolates, respectively, while a homology of 97.0%-98.2% and 94.3%-98.2% could be observed at the amino acids level respectively. Several sequence motifs in the M and F genes had been identified on the basis of conservation in the PPRVs and the morbilliviruses. The 3' untranslated region of M gene was 443 nucleotides in length with 82.4%-93.5% identical to other PPRV isolates. The 5' untranslated region of F gene was 634 nucleotides in length with 76.2%-91.7% identical to other PPRV isolates.
Amino Acid Sequence
;
Animals
;
Base Sequence
;
Molecular Sequence Data
;
Peste-des-Petits-Ruminants
;
veterinary
;
virology
;
Peste-des-petits-ruminants virus
;
chemistry
;
classification
;
genetics
;
isolation & purification
;
Phylogeny
;
Sequence Homology, Amino Acid
;
Sheep
;
Sheep Diseases
;
virology
;
Tibet
;
Viral Fusion Proteins
;
chemistry
;
genetics
;
Viral Matrix Proteins
;
chemistry
;
genetics
8.Sequence analysis of the phosphoprotein gene of peste des petits ruminants virus of Chinese origin.
Jing-yue BAO ; Wen-ji ZHAO ; Lin LI ; Zhi-liang WANG ; Guo-zhen WU ; Xiao-dong WU ; Chun-ju LIU ; Qing-hua WANG ; Jun-wei WANG ; Yu-tian LIU ; Jin-ming LI ; Ying-li WANG
Chinese Journal of Virology 2011;27(1):26-33
The nucleotide sequences of P gene from a field strain of peste des petits ruminants virus (PPRV) ("China/Tib/Gej/07-30") was firstly determined. The P gene is 1,655 nucleotides long with two overlapping open reading frames (ORFs). The first ORF is 1530 nucleotides long and would produce P protein of 509 amino acid residues. The second ORF is 534 nucleotides long and would produce C protein of 177 amino acid residues. The first ORF produces a second mRNA transcript of 897 nucleotides long with an extra G nucleotide at position 751. Translation from this mRNA would produce V protein of 298 amino acid residues. The nucleotide and deduced amino acid sequence were compared with the homologous region of other PPRV isolates. At the amino acid level, the "China/Tib/Gej/07-30" shares homology of 86.10%-97.3%, 84.3%-94.9%, and 82.9%-96.3% for P, C, and V proteins respectively. Several sequence motifs in the P genes were identified on the basis of conservation in the PPRVs and the morbilliviruses.
Amino Acid Sequence
;
Animals
;
China
;
Female
;
Goat Diseases
;
virology
;
Goats
;
Molecular Sequence Data
;
Peste-des-Petits-Ruminants
;
veterinary
;
virology
;
Peste-des-petits-ruminants virus
;
chemistry
;
genetics
;
isolation & purification
;
metabolism
;
Phosphoproteins
;
chemistry
;
genetics
;
metabolism
;
Sequence Analysis
;
Sequence Homology, Amino Acid
;
Viral Proteins
;
chemistry
;
genetics
;
metabolism
9.Recombinant goat pox virus expressing PPRV H protein.
Weiye CHEN ; Linmao QU ; Sen HU ; Qianqian HU ; Qian ZHANG ; Haibing ZHI ; Kehe HUANG ; Zhigao BU
Chinese Journal of Biotechnology 2009;25(4):496-502
The purpose of the study is to construct recombinant goat pox virus (GPV) expressing Peste des petits ruminants virus (PPRV) H protein, and to evaluate the immunization effect. Recombinant GPV containing PPRV H gene (rGPV-PPRV-H) was selected and purified by gpt and eGFP utilizing plaque purification, and the final selected recombinant GPV was proved to be purified by PCR. Immunofluorescence and Western blotting showed that the recombinant virus could express H protein of PPRV while infecting lamb testis cells. Six goats were immunized with 2 x 10(6) PFU rGPV-PPRV-H through intradermal injection, and were immunized for the second time at 28 days with the same dose recombinant virus after first immunization. Serum was collected after immunization, and was analyzed for the neutralization antibodies. 21 days after first immunization, the neutralization antibodies of GPV were 40, 80, > or = 80, > or = 80, 40, > or = 80 in turn, and neutralization antibodies of PPRV were 80, 80, 80, 80, 40, 40, 10 in turn; 14 days after second immunization, the neutralization antibodies of GPV were all > or = 80, and the neutralization antibodies of PPRV were > 80, 80, > 80, 80, 80 and 40 in turn. This study established a foundation for the industrialization of the PPRV recombinant GPV vaccine.
Animals
;
Capripoxvirus
;
genetics
;
immunology
;
Goat Diseases
;
immunology
;
prevention & control
;
virology
;
Goats
;
Hemagglutinins, Viral
;
genetics
;
immunology
;
metabolism
;
Peste-des-Petits-Ruminants
;
immunology
;
prevention & control
;
Peste-des-petits-ruminants virus
;
genetics
;
immunology
;
Recombinant Proteins
;
genetics
;
immunology
;
metabolism
;
Vaccines, Combined
;
immunology
;
Vaccines, Synthetic
;
immunology
;
Viral Vaccines
;
immunology
10.Sequence analysis of the nucleocapsid gene and genome promoter region of peste des petits ruminants virus of Chinese origin.
Jing-Yue BAO ; Zhi-Liang WANG ; Lin LI ; Wen-Ji ZHAO ; Long-Ci-Ren SUO ; Jin-Ming LI ; Ying-Li WANG ; Xiao-Dong WU ; Chun-Ju LIU ; Yu-Tian LIU ; Xiao-Jing YU ; Yong-Mei YANG
Chinese Journal of Virology 2008;24(6):464-471
The N gene and genome promoter nucleotide sequence of a Chinese Peste des petits rumiants virus (PPRV) ("China/Tib/Gej/07-30") was firstly determined. The length of N gene was 1689 nucleotides with a single open reading frame (ORF). The nucleotide and deduced amino acid sequence was compared with the homologous region of other PPRV isolates. The nucleotide sequence of the "China/Tib/Gej/07-30" was 91.7%-97.6% identical to other PPRV isolates, while a homology of 94.9%-98.5% could be observed at the amino acids level. The N gene encoded a protein of 525 amino acids. Several sequence motifs were identified on the basis of conservation in the PPRVs and the morbilliviruses. The genome length of promoter region was 107 nucleotides with 91.8%-98.2% identity to other PPRV isolates. Phylogenetic analysis showed that the "China/Tib/Gej/07-30" belonged to the Asian lineage.
Amino Acid Sequence
;
Animals
;
Base Sequence
;
China
;
Female
;
Genome, Viral
;
Goat Diseases
;
virology
;
Goats
;
Molecular Sequence Data
;
Nucleocapsid Proteins
;
chemistry
;
genetics
;
Peste-des-Petits-Ruminants
;
virology
;
Peste-des-petits-ruminants virus
;
chemistry
;
classification
;
genetics
;
isolation & purification
;
Phylogeny
;
Promoter Regions, Genetic
;
Sequence Alignment
;
Sequence Analysis