1.Effect of peroxisome proliferator-activated receptors activators on plasminogen activator inhibitor-1 expression in HepG-2 cells.
Yan-Li HE ; Xin ZHOU ; Ping YE ; Hong FANG ; Yong-Xue LIU ; Cheng-Hua LUO ; Qiong WANG
Chinese Journal of Applied Physiology 2003;19(3):298-301
AIMTo investigate the effect of different peroxisome proliferator-activated receptors (PPARs) activators on plasminogen activator inhibitor-1 in HepG-2 cell line and explore the effect of PPARs on PAL-1 gene expression.
METHODSStearic acid, oleic acid, linoleic acid, fenofibrate, pioglitazone were used in the treatment of HepG-2 cell culture. The level of PAI-1 and PPARs mRNA was measured by reverse transcription-polymerase chain reaction (RT-PCR) and the level of PAI-1 activity and PPARs protein was determined by colorimetric assay and western blotting respectively.
RESULTSThe mRNA and activity of PAI-1 significantly increased in the groups of oleic acid and linoleic acid compared with the control, but decreased in the group of fenofibrate. There were no significant changes in both groups of stearic acid and pioglitazone. The alterations in the level of PPARs mRNA and protein were not detected in all the treated groups compared with the control.
CONCLUSIONPeroxisome proliferator-activated receptors activators play important roles in the PAI-1 gene expression and regulation. It is likely mediated by the activation of PPARalpha, but there might be other mechanisms.
Fenofibrate ; pharmacology ; Hep G2 Cells ; Humans ; Linoleic Acid ; pharmacology ; Oleic Acid ; pharmacology ; Peroxisome Proliferator-Activated Receptors ; agonists ; metabolism ; Plasminogen Activator Inhibitor 1 ; genetics ; metabolism ; RNA, Messenger ; genetics
2.Rosiglitazone enhances the anti-atherosclerotic effects of peroxisome proliferator-activated receptor gamma1 gene transfer in apolipoprotein-knock out mice.
Qin HU ; Yun ZHANG ; Xian-Jun ZHANG
Chinese Journal of Cardiology 2007;35(11):1050-1056
OBJECTIVETo explore if PPARgamma agonist rosiglitazone could enhance the anti-atherosclerotic effects of mouse peroxisome proliferator-activated receptor gamma1 (PPARgamma1) gene transfer in apolipoprotein-knock out mice.
METHODSAdult ApoE-knock out mice were fed a Western-diet for 20-weeks and then injected with PBS, Ad. PPARgamma1 (5 x 10(8)pfu) or Ad. GFP (5 x 10(8)pfu) via jugular vein. Another group of mice were intervened with rosiglitazone (dissolved in 0.5% cellulose acetate, 4 mg.kg(-1).d(-1), per gavage) 1 week before Ad. PPARgamma1 injection (n = 10, each group). Two weeks later, the lipid core and plaque composition were characterized with oil red O staining and Movat method respectively. The expression of PPARgamma, SM-actin, MOMA-2, MMP-9/TIMP-1, CD40/CD40L and TF antigens in aortic roots and plaques among four groups were compared semi-quantitatively using immunohistochemical technology.
RESULTSAll parameters were similar between AdGFP and PBS groups (P > 0.05). The area of plaque were significantly decreased and oil red O staining area significantly increased in AdPPARgamma1 [(0.86 +/- 0.12) mm(2), (150 +/- 35) x 10(3) microm(2)] and AdPPARgamma1 + RO [(0.79 +/- 0.15) mm(2), (270 +/- 49) x 10(3) microm(2)] treated mice compared with AdGFP group [(0.98 +/- 0.17) mm(2), (80 +/- 21) x 10(3) microm(2)] all P < 0.05. Elastic fiber, collagen and proteoglycan in plaques were also significantly increased in AdPPARgamma1 and AdPPARgamma1 + RO groups. Upregulation of PPARgamma, SM-actin, TIMP-1 antigen activity and downregulation of MOMA-2, MMP-9, CD40/CD40L and TF antigen activity in AdPPARgamma1 and most significantly in AdPPARgamma1 + RO group were observed (P < 0.05).
CONCLUSIONAnti-atherosclerotic effects of PPARgamma1 gene transfer in ApoE-knock out mice could be enhanced by PPARgamma agonist rosiglitazone.
Animals ; Apolipoproteins E ; deficiency ; genetics ; Atherosclerosis ; genetics ; Gene Transfer Techniques ; Male ; Mice ; Mice, Knockout ; PPAR gamma ; agonists ; genetics ; metabolism ; Peroxisome Proliferator-Activated Receptors ; metabolism ; Thiazolidinediones ; pharmacology ; Transfection
3.Research progress on active ingredients of traditional Chinese medicines improved insulin resistance based on PPARs targets.
Hui-jie JIANG ; Xiao-jing ZHANG ; Hui ZHANG ; Ji-zhong YAN
China Journal of Chinese Materia Medica 2015;40(22):4355-4358
Peroxisome proliferator-activated receptors (PPARs) are nuclear transcriptional factors closely related to glucose and lipid metabolism, insulin sensitivity. Activation of PPARs targets treated type 2 diabetes, obesity, hypertension and other metabolic diseases by insulin resistance. Recently, a variety of active ingredients of traditional Chinese medicines (TCMs) have been proved to activate PPARs targets for improving insulin resistance, which has attracted widespread attention at home and abroad. In this paper, we reviewed the pathological mechanisms between insulin resistance and PPARs, and summarized the active ingredients of TCMs improved insulin resistance based on PPARs targets. This paper may provide some theoretical guidance for the development of new drugs and TCMs.
Animals
;
Drugs, Chinese Herbal
;
pharmacology
;
Humans
;
Insulin Resistance
;
Metabolic Diseases
;
drug therapy
;
genetics
;
metabolism
;
Peroxisome Proliferator-Activated Receptors
;
antagonists & inhibitors
;
genetics
;
metabolism
4.Molecular Targets of Dietary Polyphenols with Anti-inflammatory Properties.
Joo Heon YOON ; Seung Joon BAEK
Yonsei Medical Journal 2005;46(5):585-596
There is persuasive epidemiological and experimental evidence that dietary polyphenols have anti-inflammatory activity. Aspirin and other non-steroidal anti-inflammatory drugs (NSAIDs) have long been used to combat inflammation. Recently, cyclooxygenase (COX) inhibitors have been developed and recommended for treatment of rheumatoid arthritis (RA) and osteoarthritis (OA). However, two COX inhibitors have been withdrawn from the market due to unexpected side effects. Because conventional therapeutic and surgical approaches have not been able to fully control the incidence and outcome of many inflammatory diseases, there is an urgent need to find safer compounds and to develop mechanism-based approaches for the management of these diseases. Polyphenols are found in many dietary plant products, including fruits, vegetables, beverages, herbs, and spices. Several of these compounds have been found to inhibit the inflammation process as well as tumorigenesis in experimental animals; they can also exhibit potent biological properties. In addition, epidemiological studies have indicated that populations who consume foods rich in specific polyphenols have lower incidences of inflammatory disease. This paper provides an overview of the research approaches that can be used to unravel the biology and health effects of polyphenols. Polyphenols have diverse biological effects, however, this review will focus on some of the pivotal molecular targets that directly affect the inflammation process.
Phospholipases A/antagonists & inhibitors
;
Phenols/*pharmacology
;
Peroxisome Proliferator-Activated Receptors/drug effects/physiology
;
NF-kappa B/metabolism
;
Lipoxygenase Inhibitors/pharmacology
;
Humans
;
Flavonoids/*pharmacology
;
Cytokines/biosynthesis
;
Cyclooxygenase Inhibitors/pharmacology
;
Arachidonic Acid/metabolism
;
Anti-Inflammatory Agents/*pharmacology
;
Animals
5.Synthesis of novel beta-aminoalcohols containing nabumetone moiety with potential antidiabetic activity.
Kun ZHANG ; Ju-fang YAN ; Xue-mei TANG ; Hong-ping LIU ; Li FAN ; Guang-ming ZHOU ; Da-cheng YANG
Acta Pharmaceutica Sinica 2011;46(4):412-421
Twenty five new beta-aminoalcohols containing nabumetone moiety were prepared via the reduction of potassium borohydride with a convenient and efficient procedure, starting from beta-aminoketones that have been synthesized by our group. Their chemical structures were determined by IR, MS, 1H NMR, 13C NMR, HR-MS and antidiabetic activities were screened in vitro. Preliminary results revealed that the antidiabetic activity of most beta-aminoalcohols were better than that of the corresponding beta-aminoketones. Although most compounds showed weak antidiabetic activity, the alpha-glucosidase inhibitory activity of compounds 5hd(1) and 5id(2) reached 74.37% and 90.15%, respectively, which were superior to the positive control. The relative peroxisome proliferator-activated receptor response element (PPRE) activity of five compounds were more than 60%, among them compound 5ca possessed the highest activity (112.59%). As lead molecules of antidiabetic agents, compounds 5hd(1), 5id(2) and 5ca deserve further study.
Amino Alcohols
;
chemical synthesis
;
chemistry
;
pharmacology
;
Butanones
;
chemical synthesis
;
chemistry
;
pharmacology
;
Cyclooxygenase 2 Inhibitors
;
chemical synthesis
;
chemistry
;
pharmacology
;
Glycoside Hydrolase Inhibitors
;
Hypoglycemic Agents
;
chemical synthesis
;
chemistry
;
pharmacology
;
Peroxisome Proliferator-Activated Receptors
;
agonists
;
metabolism
;
Response Elements
;
alpha-Glucosidases
;
metabolism
6.Design, synthesis and PPAR agonist activities of novel L-tyrosine derivatives containing phenoxyacetyl moiety.
Li-Jiang ZHOU ; Ju-Fang YAN ; Kun ZHANG ; Li FAN ; Xin CHEN ; Da-Cheng YANG
Acta Pharmaceutica Sinica 2013;48(10):1570-1578
The design, synthesis and bioevaluation of a series of novel L-tyrosine derivatives as peroxisome proliferator-activated receptor (PPAR) agonists are reported. Four intermediates and twenty L-tyrosine derivatives containing phenoxyacetyl moiety TM1 were synthesized starting from L-tyrosine via four step reactions including the esterification of carboxyl group, phenoxyacetylation of a-amino group, bromoalkylation of phenolic hydroxyl group and then nucleophilic substitution reaction with various heterocyclic amines in 21%-75% overall yield. Subsequently TM1 were hydrolyzed to give sixteen corresponding target compounds TM2 in 77%-99% yield. The chemical structures of the thirty-nine new compounds were identified using 1H NMR, 13C NMR techniques and thirty-five were confirmed by HR-MS techniques. Screening results in vitro showed that the PPAR relative activation activities of the target molecules are weak overall, while compound TM2i reaches 50.01%, which hints that the molecular structures of these obtained compounds need to be modified further.
Hep G2 Cells
;
Humans
;
Hypoglycemic Agents
;
chemical synthesis
;
chemistry
;
pharmacology
;
Molecular Structure
;
Peroxisome Proliferator-Activated Receptors
;
agonists
;
metabolism
;
Phenoxyacetates
;
chemical synthesis
;
chemistry
;
pharmacology
;
Structure-Activity Relationship
;
Tyrosine
;
analogs & derivatives
;
chemical synthesis
;
chemistry
;
pharmacology
7.Synthesis and investigation on antidiabetic activity of 4-(1-aryl-3-oxo-5-phenylpentylamino) benzenesulfonamide.
Da-Cheng YANG ; Ju-Fang YAN ; Jin XU ; Fei YE ; Zu-Wen ZHOU ; Wei-Yu ZHANG ; Li FAN ; Xin CHEN
Acta Pharmaceutica Sinica 2010;45(1):66-71
Searching for new antidiabetic lead compound, 4-(1-aryl-3-oxo-5-phenylpentylamino) benzenesulfonamides were designed and synthesized directly by three component one-pot condensation of 4-phenyl-2-butanone and sulfanilamide with some aromatic aldehydes at an yield of 23%-97%. The chemical structures of the twelve new Mannich bases were confirmed by 1H NMR, 13C NMR, FTIR, ESI-MS and HR-MS. The screening results of antidiabetic activity indicated that most of these title compounds possess alpha-glucosidase inhibitory activity, among which compound le is the strongest one. And compound 11 possesses good peroxisome proliferator-activated receptor response element (PPRE) agonist activity. The structure-activity relationship of these new beta-amino ketones containing benzenesulfonamide unit was also discussed preliminarily.
Drug Design
;
Glycoside Hydrolase Inhibitors
;
Hypoglycemic Agents
;
chemical synthesis
;
chemistry
;
pharmacology
;
Peroxisome Proliferator-Activated Receptors
;
agonists
;
Structure-Activity Relationship
;
Sulfanilamides
;
chemistry
;
Sulfonamides
;
chemical synthesis
;
chemistry
;
pharmacology
;
alpha-Glucosidases
;
metabolism
8.Design, synthesis and antidiabetic activity of novel tetrahydrocarboline PPAR regulators.
Kun PENG ; Yi HUAN ; Quan LIU ; Zhu-Fang SHEN ; Zhan-Zhu LIU
Acta Pharmaceutica Sinica 2014;49(4):490-496
A series of novel tetrahydrocarboline derivatives was designed and synthesized in order to discover more potent peroxisome proliferator-activated receptor (PPAR) alpha/gamma dual regulators. The structures of these compounds were confirmed by 1H NMR and HR-MS; their PPAR-regulating activities were evaluated in vitro. Compounds 6h, 6n, 6p and 6q exhibited more potent PPARalpha agonistic activities than the control drug WY14643, while compounds 60, 6g, 6i and 6q exhibited more potent PPARgamma agonistic activities than the control drug rosiglitazone. Compound 6q was discovered as a potent PPARalpha/gamma dual agonist and deserves further investigation.
Animals
;
Carbolines
;
chemical synthesis
;
chemistry
;
pharmacology
;
Cells, Cultured
;
Drug Design
;
Hypoglycemic Agents
;
chemical synthesis
;
chemistry
;
pharmacology
;
Molecular Structure
;
PPAR alpha
;
agonists
;
PPAR gamma
;
agonists
;
Peroxisome Proliferator-Activated Receptors
;
agonists
;
Pyrimidines
;
metabolism
;
Structure-Activity Relationship
;
Thiazolidinediones
;
metabolism
;
Transfection
9.Synthesis and PPAR activities of novel phenylacetic acid derivatives containing sulfonamide moiety.
Yan YANG ; Ju-Fang YAN ; Li FAN ; Xin CHEN ; Li JIANG ; Da-Cheng YANG
Acta Pharmaceutica Sinica 2012;47(12):1630-1639
The discovery of high performance leading antidiabetic compounds containing sulfonamide and 4-aminophenylacetic acid moieties is reported. This was achieved by the synthesis of 6 intermediates and subsequently 20 target molecules using 4-aminophenylacetic acid as the starting materials, and through a few synthetic routes aided by multi-step reactions including sulfonylation of amino group, deacylation of amides and esterification of carboxyl group, as well as acylation of amino group. The chemical structures of the twenty-four new compounds were determined using 1H NMR, 13C NMR and HR-MS techniques. Screening in vitro of their peroxisome proliferator-activated receptor (PPAR) activation activities showed weak relative PPAR activation activities to most of the target molecules. However, 4 target molecules exhibit PPAR over 58%, and as high as 81.79% for TM2-i, presenting itself as potent leading compound for antidiabetic drugs. This research also confirms that it is probable to achieve esterification of carboxyl group and deacylation of fatty acid N-phenyl amides concurrently in SOCl2/alcohol solvent system. This provides new synthetic method for the selective reaction within molecules containing both carboxyl and N-aryl amido groups of fatty acids.
Aniline Compounds
;
chemistry
;
Fatty Acids
;
chemistry
;
Hep G2 Cells
;
metabolism
;
Humans
;
Hypoglycemic Agents
;
chemical synthesis
;
chemistry
;
pharmacology
;
Molecular Structure
;
Peroxisome Proliferator-Activated Receptors
;
metabolism
;
Phenylacetates
;
chemical synthesis
;
chemistry
;
pharmacology
;
Structure-Activity Relationship
;
Sulfonamides
;
chemistry
10.Synthesis and preliminary evaluation of antidiabetic activity of 4-(3-(4-bromophenyl)-3-oxo-1-arylpropylamino)-N-(5-methylisoxazol-3-yl)benzenesulfonamide.
Ying-xia ZHANG ; Ju-fang YAN ; Li FAN ; Wei-yu ZHANG ; Zu-wen ZHOU ; Xin CHEN ; Xiao-yan SU ; Xue-mei TANG ; Da-cheng YANG
Acta Pharmaceutica Sinica 2009;44(11):1244-1251
Diabetes mellitus is a common metabolic disease with a high and growing prevalence affecting 4% of the population worldwide, the development of safe and effective therapeutic drug is the major thrust for chemists and pharmacists. To search for active antidiabetic lead compound, we designed and synthesized some novel beta-amino ketone derivatives containing sulfamethoxazole moiety directly through Mannich reaction of sulfamethoxazole, 4-bromoacetophenone and some aromatic aldehydes catalyzed by concentrated hydogen chloride or iodine in the solution of ethanol at 24-40 degrees C with convenient operation, mild reaction condition and satisfactory yield (32%-90%). Their chemical structures were characterized by 1H NMR, 13C NMR, MS and HR-MS. Biological activity tests showed that, in the range of low concentration (5-10 microg x mL(-1)), these title compounds to a certain degree possess protein tyrosine phosphatase 1B (PTP1B) inhibitory activity and a-glucosidase inhibitory activity, moreover, some could activate peroxisome proliferator-activated receptor response element (PPRE) moderately. The PPRE agonist activities of seven compounds are almost 40% of that of Pioglitazone (the positive control), compound 12 shows the strongest activity (66.35%) among them. Thus, it was found that some of 4-(3-(4-bromophenyl)-3-oxo-1-arylpropylamino)-N-(5-methyl-isoxazol-3-yl) benzenesulfonamide containing sulfamethoxazole moiety exhibited antidiabetic activity for the first time.
Glycoside Hydrolase Inhibitors
;
Humans
;
Hypoglycemic Agents
;
chemical synthesis
;
chemistry
;
pharmacology
;
Molecular Structure
;
Oxazoles
;
chemistry
;
Peroxisome Proliferator-Activated Receptors
;
agonists
;
Protein Tyrosine Phosphatase, Non-Receptor Type 1
;
antagonists & inhibitors
;
Response Elements
;
Structure-Activity Relationship
;
Sulfonamides
;
chemistry
;
Thiazolidinediones
;
pharmacology