1.Comparison of active components in different parts of Perilla frutescens and its pharmacological effects.
Liang-Qi ZHANG ; Wen-Jiao LI ; Mei-Feng XIAO
China Journal of Chinese Materia Medica 2023;48(24):6551-6571
Perilla frutescens is a widely used medicinal and edible plant with a rich chemical composition throughout its whole plant. The Chinese Pharmacopoeia categorizes P. frutescens leaves(Perillae Folium), seeds(Perillae Fructus), and stems(Perillae Caulis) as three distinct medicinal parts due to the differences in types and content of active components. Over 350 different bioactive compounds have been reported so far, including volatile oils, flavonoids, phenolic acids, triterpenes, sterols, and fatty acids. Due to the complexity of its chemical composition, P. frutescens exhibits diverse pharmacological effects, including antibacterial, anti-inflammatory, anti-allergic, antidepressant, and antitumor activities. While scholars have conducted a substantial amount of research on different parts of P. frutescens, including analysis of their chemical components and pharmacological mechanisms of action, there has yet to be a systematic comparison and summary of chemical components, pharmacological effects, and mechanisms of action. Therefore, this study overviewed the chemical composition and structures of Perillae Folium, Perillae Fructus, and Perillae Caulis, and summarized the pharmacological effects and mechanisms of P. frutescens to provide a reference for better development and utilization of this valuable plant.
Perilla frutescens/chemistry*
;
Plant Extracts/pharmacology*
;
Seeds/chemistry*
;
Fruit/chemistry*
;
Oils, Volatile/analysis*
;
Plant Leaves/chemistry*
2.Study on morphological classification and chemical-type of Perilla frutescens cultivated germplasm.
Wei-Ping LI ; Chang-Ling WEI ; Chen-Wu ZHANG ; Bao-Lin GUO
China Journal of Chinese Materia Medica 2019;44(3):454-459
Fifty cultivated Perilla seeds were collected all over the country and planted in Beijing experiment field for morphology and chemical-type researches. Twenty morphological characteristics were selected and observed, and the essential oil from leaves was extracted by steam distillation and analyzed by GC-MS to confirm chemical-types. There were significant diversities in plant height, leaf color and morphology, and fruit color and weight. Clustering analysis was carried out based on these morphological characteristics. Six types were divided with their chemical-type designated. Type Ⅰ: Six germplasms, attributed to P. frutescens var. crispa, with dwarf plants, thin creased purple leaf, named Crispa, their chemical types were diversified, including EK, PAPK, PA and PK. Type Ⅱ: Six germplasms, attributed to P. frutescens var. crispa, plants were taller than type I and with thin and creased green leaf, named Big Crispa, all PK type. Type Ⅲ: Seventeen germplasms, attributed to P. frutescens var. frutescens with leaf color upside green and underside purple, tall plant and wide distribution all over the China, named Ordinary Frutescens, all PK. Type Ⅳ: Four germplasms, attributed to P. frutescens var. acuta with tall plant and small seed, named Acuta, all PK. Type Ⅴ: Seven germplasms, attributed to P. frutescens var. frutescens with green leaves, tall plants and long clusters, named Long-spike Frutescens, all PK. Type Ⅵ: Ten germplasms, attributed to P. frutescens var. frutescens with big, thick and creased leaf, named Thick-leaf Frutescens, including PK, PP, PL and PA. The morphological classification of this paper would lay the foundation for the taxonomic naming and following evaluation of the Perilla germplasm resources.This study also showed that there was no correspondence but a certain correlation between volatile oil chemical-types and subspecies classification and morphological characteristics of Perilla.
China
;
Oils, Volatile
;
analysis
;
Perilla frutescens
;
anatomy & histology
;
chemistry
;
Plant Leaves
;
anatomy & histology
;
chemistry
3.Advances in research of volatile oil and its different chemotypes in leaves of Perilla frutescens.
China Journal of Chinese Materia Medica 2015;40(15):2937-2944
The volatile oil is the main component in the leaves of Perilla frutescens. According to the main types of monoterpenoids or aromatic compounds, it can be divided into different chemotypes and the main chemotypes of Chinese producing Perilla are PA type (mainly containing Perilla aldehyde and limonene), PK type (mainly containing perillaketone) and PP type (subdivided as PP-a type, with apiole as its main component; PP-m type, with myristicin as its main component; PP-e type, with elemicin as main component; PP-as type, with asarone as main component). Based on the biosynthetic pathways analysis, we also found that the formation of the particular chemotype is usually controlled by a single gene or a few genes, and different types have different pharmacological effects. In this paper, the classification under the species P. frutescens, main chemotypes of the volatile oil, and their biogenesis and regulation, pharmacological effect and influence factors are summarized and reviewed.
Animals
;
Humans
;
Oils, Volatile
;
analysis
;
pharmacology
;
toxicity
;
Perilla frutescens
;
chemistry
;
classification
;
metabolism
;
Plant Leaves
;
chemistry
4.Research on influence of environment factors to yield and quality traits of Perilla frutescen.
Qi SHEN ; Ji-Xian ZHAO ; Xue-Bo QIU ; Zhi-Wei SHANG ; Xian-Ping WANG ; Sen YANG ; Jing XU ; Shi-Lin CHEN
China Journal of Chinese Materia Medica 2018;43(20):4033-4043
The research is aimed to study of the influence of environmental factors on the yield and quality traits, and find out the regularity of the growth and development of perilla. The main environmental factor data in six ecological area in Guizhou province were collected, and the correlation analysis with yield and quality traits of 15 perilla strains was conducted. The results showed that the cultivation environment has significant effects on the yield and quality traits of perilla. The effect of environment on main yield composed traits, contained grain number in top spike, effective panicle number per plant, plant height, top spike length, growth period, and thousand seed weight was degressive. In the different environmental factors, the latitude showed positive correlation with yield, growth period and effective panicle number per plant, and negative correlation with top spike length and grain number in top spike. Elevation showed negative correlation with the growth period of perilla. The perilla yield increased at first and then decreased with altitude rising, with the maximum in the 800 m altitude. The 600-900 m altitude is suitable area for perilla. Except for positive correlation with the plant height, and negative correlation with top spike length, the longitude showed in apparent impact on other traits. Sunshine duration, temperature and rainfall accumulation showed different effect on the different perilla strains. For yield composed traits, the sunshine duration was negatively correlation with the plant length. The accumulated temperature and mean temperature showed negative correlation with the main spike length, the rainfall showed negative correlation with the precipitation and growth period, plant height, ear number. The environmental impact on the oil compounds decreased with oleic acid, stearic acid, linoleic acid, -linolenic acid, palmitic acid and oil content. Correlation analysis showed that the significantly negative correlation between the oil content and palmitic acid and linoleic acid content, and the positive correlation between linolenic acid content, -linolenic acid content showed significant negative correlation with other fatty acids composition, and palmitic acid, stearic acid, oleic acid, linoleic acid showed significant positive correlation with each other. The influence of different environmental factors on the quality of perilla were as follows: the oil content was positively associated with elevation and sunshine duration. -Linolenic acid content showed negative correlation with longitude, latitude, accumulated temperature and mean temperature, but positive correlation with altitude, sunlight and rainfall capacity. The correlation between palmitic acid, stearic acid, oleic acid, linoleic acid and environmental factors showed contrast character of -linolenic acid. This study detailed discussed the influence of environmental factors on the quality of perilla, which provided the foundation of ecological planting technology and geoherbalism research of perilla.
Environment
;
Fatty Acids
;
analysis
;
Perilla frutescens
;
chemistry
;
growth & development
;
Phytochemicals
;
analysis
;
Plant Oils
;
analysis
5.Quality specification of Perillae Fructus.
Lihua GU ; Chen LIN ; Tao WU ; Guixin CHOU ; Zhengtao WANG
China Journal of Chinese Materia Medica 2010;35(16):2087-2090
To improve the quality control specification of Perillae Fructus, the identification methods and assay were developed. Rosmarinic acid, luteolin and apigenin in the sample were identified by TLC. The content of rosmarinic acid was determined by HPLC. The linear calibration curve of rosmarinic acid was obtained in the ranges of 19.4-194.2 g x L(-1) (R2 = 0.9999). The arerage coveriy (n=9) for the assay was 99.8% (RSD 3.6%). The established methods are accuracy, sensitivity and reproducible, and can be used for the quality control of Perillae Fructus.
Apigenin
;
analysis
;
Chromatography, High Pressure Liquid
;
Chromatography, Thin Layer
;
Cinnamates
;
analysis
;
Depsides
;
analysis
;
Luteolin
;
analysis
;
Perilla frutescens
;
chemistry
;
Reproducibility of Results
6.SNP marker and allele-specific diagnostic PCR for authenticating herbs of Perilla.
Yu-ming LUO ; Wei-ming ZHANG ; Xiao-yu DING ; Jie SHEN ; Shu-lin BAO ; Bi-hai CHU ; Shan-guo MAO
Acta Pharmaceutica Sinica 2006;41(9):840-845
AIMTo authenticate all the varieties of Perilla (single-species genus), to analyze sequences of rDNA ITS regions and single nucleotide polymorphism (SNP) within them and based on these, to design allele-specific diagnostic PCR primers.
METHODSThe rDNA ITS regions of the perilla varieties were sequenced and analyzed by Clustal X 1.8, MEGA 3.0. Allele-specific diagnostic PCR primers that can authenticate all the perilla varieties were designed based on SNPs loci.
RESULTSThe length of rDNA ITS sequences of perilla varieties ranged from 612 to 615 bp in size, including ITS1 (230 -232 bp), 5.8S (179 bp) and ITS2 (203 -204 bp). The GC content is about 61.5% - 61.9%. There is not only SNPs in non-coding region ITS1 and ITS2 (ncSNP), but also three coding SNPs (cSNP) loci in the conservative region of 5.8S. All the SNPs have only two allele loci polymorphism. The cSNP in 5.8S is related to the morphology variation among the varieties. Allele-specific diagnostic PCR primers have been designed according to SNPs loci to authenticate accurately all the seeds and leaves of Perilla varieties.
CONCLUSIONSNPs in rDNA ITS region can be used as an effective molecular markers to authenticate all the varieties of Perilla.
Alleles ; DNA, Plant ; chemistry ; genetics ; DNA, Ribosomal Spacer ; chemistry ; genetics ; Genetic Markers ; Perilla ; classification ; genetics ; Perilla frutescens ; genetics ; Plant Leaves ; genetics ; Plants, Medicinal ; genetics ; Polymerase Chain Reaction ; methods ; Polymorphism, Single Nucleotide ; Seeds ; genetics ; Sequence Analysis, DNA ; Species Specificity
7.Cloning and functional characterization of a lysophosphatidic acid acyltransferase gene from Perilla frutescens.
Yali ZHOU ; Xusheng HUANG ; Yueru HAO ; Guiping CAI ; Xianfei SHI ; Runzhi LI ; Jiping WANG
Chinese Journal of Biotechnology 2022;38(8):3014-3028
Perilla (Perilla frutescens L.) is an important edible-medicinal oil crop, with its seed containing 46%-58% oil. Of perilla seed oil, α-linolenic acid (C18:3) accounts for more than 60%. Lysophosphatidic acid acyltransferase (LPAT) is one of the key enzymes responsible for triacylglycerol assembly in plant seeds, controlling the metabolic flow from lysophosphatidic acid to phosphatidic acid. In this study, the LPAT2 gene from the developing seeds of perilla was cloned and designated as PfLPAT2. The expression profile of PfLPAT2 gene was examined in various tissues and different seed development stages of perilla (10, 20, 30, and 40 days after flowering, DAF) by quantitative real-time PCR (qRT-PCR). In order to detect the subcellular localization of PfLPAT2 protein, a fusion expression vector containing PfLPAT2 and GFP was constructed and transformed into Nicotiana benthamiana leaves by Agrobacterium-mediated infiltration. In order to explore the enzymatic activity and biological function of PfLPAT2 protein, an E. coli expression vector, a yeast expression vector and a constitutive plant overexpression vector were constructed and transformed into an E. coli mutant SM2-1, a wild-type Saccharomyces cerevisiae strain INVSc1, and a common tobacco (Nicotiana tabacum, variety: Sumsun NN, SNN), respectively. The results showed that the PfLPAT2 open reading frame (ORF) sequence was 1 155 bp in length, encoding 384 amino acid residues. Functional structure domain prediction showed that PfLPAT2 protein has a typical conserved domain of lysophosphatidic acid acyltransferase. qRT-PCR analysis indicated that PfLPAT2 gene was expressed in all tissues tested, with the peak level in seed of 20 DAF of perilla. Subcellular localization prediction showed that PfLPAT2 protein is localized in cytoplasm. Functional complementation assay of PfLPAT2 in E. coli LPAAT mutant (SM2-1) showed that PfLPAT2 could restore the lipid biosynthesis of SM2-1 cell membrane and possess LPAT enzyme activity. The total oil content in the PfLPAT2 transgenic yeast was significantly increased, and the content of each fatty acid component changed compared with that of the non-transgenic control strain. Particularly, oleic acid (C18:1) in the transgenic yeast significantly increased, indicating that PfLPAT2 has a higher substrate preference for C18:1. Importantly, total fatty acid content in the transgenic tobacco leaves increased by about 0.42 times compared to that of the controls, with the C18:1 content doubled. The increased total oil content and the altered fatty acid composition in transgenic tobacco lines demonstrated that the heterologous expression of PfLPAT2 could promote host oil biosynthesis and the accumulation of health-promoting fatty acids (C18:1 and C18:3). This study will provide a theoretical basis and genetic elements for in-depth analysis of the molecular regulation mechanism of perilla oil, especially the synthesis of unsaturated fatty acids, which is beneficial to the genetic improvement of oil quality of oil crops.
Acyltransferases
;
Cloning, Molecular
;
Escherichia coli/metabolism*
;
Fatty Acids
;
Perilla frutescens/metabolism*
;
Plant Oils
;
Plant Proteins/metabolism*
;
Saccharomyces cerevisiae/metabolism*
;
Seeds/chemistry*
;
Tobacco/genetics*
8.Effects of extracts from different parts of Folium perillae (L.) Britt. on Hemorrheological parameters in rats.
Zaipin XU ; Xiaoyan DENG ; Jiying MEN ; Xuejian FENG ; Zhanjun LU ; Qinghua YANG ; Biqiong YAO
Journal of Biomedical Engineering 2006;23(4):762-765
In order to provide experimental data for the development and application of drug in clinic, we determined the effects of extracts from different parts of folium perillae (L. ) Britt. on hemorheological parameters, extracted from leaves (folium perillae), seeds (fructus perillae) and peduncles (caulis perillae). The results showed that all extracts from different parts of folium perillae (L. ) Britt. can significantly reduce the whole blood viscosity at low shear rate (10 s(-1)), erythrocyte aggregation index, erythrocyte electrophoresis index (P<0.05), and the whole blood reductive viscosity at low shear rate (10 s(-1)) (P<0.01). Extracts from folium perillae and caulis perillae can significantly decrease erythrocyte deformation index (P<0.05), whereas extracts from fructus perillae can not. Extracts from fructus perillae and caulis perillae can significantly decrease plasma viscosity at low shear rate(10 s(-1)), but extracts of folium perillae can not. Aspirin can only decrease the whole blood reductive viscosity at low shear rate and plasma viscosity (P<0.05). All extracts from different parts of folium perillae (L. ) Britt. had no significant effects on hematocrit, erythrocyte rigidity index, fibrinogen concentration , the whole blood viscosity and the whole blood reductive viscosity at middle and high shear rate (60 s(-1),120 s(-1)).
Animals
;
Blood Viscosity
;
drug effects
;
Erythrocyte Aggregation
;
drug effects
;
Erythrocyte Deformability
;
drug effects
;
Male
;
Perilla frutescens
;
anatomy & histology
;
chemistry
;
Plant Extracts
;
pharmacology
;
Plant Leaves
;
chemistry
;
Plant Stems
;
chemistry
;
Random Allocation
;
Rats
;
Rats, Wistar
;
Seeds
;
chemistry
9.Antidepressant-like effect of essential oil of Perilla frutescens in a chronic, unpredictable, mild stress-induced depression model mice.
Wei-Wei JI ; Rui-Peng LI ; Meng LI ; Shu-Yuan WANG ; Xian ZHANG ; Xing-Xing NIU ; Wei LI ; Lu YAN ; Yang WANG ; Qiang FU ; Shi-Ping MA
Chinese Journal of Natural Medicines (English Ed.) 2014;12(10):753-759
Perilla frutescens (Perilla leaf), a garnishing vegetable in East Asian countries, as well as a plant-based medicine, has been used for centuries to treat various conditions, including depression. Several studies have demonstrated that the essential oil of P. frutescens (EOPF) attenuated the depressive-like behavior in mice. The present study was designed to test the anti-depressant effects of EOPF and the possible mechanisms in an chronic, unpredictable, mild stress (CUMS)-induced mouse model. With the exposure to stressor once daily for five consecutive weeks, EOPF (3, 6, and 9 mg·kg(-1)) and a positive control drug fluoxetine (20 mg·kg(-1)) were administered through gastric intubation to mice once daily for three consecutive weeks from the 3(rd) week. Open-field test, sucrose consumption test, tail suspension test (TST), and forced swimming test (FST) were used to evaluate the behavioral activity. The contents of 5-hydroxytryptamine (5-HT) and its metabolite, 5-hydroxyindoleacetic acid (5-HIAA), in mouse hippocampus were determined by HPLC-ECD. Serum interleukin (IL)-1, IL-6, and tumor necrosis factor (TNF)-α levels were evaluated by enzyme-linked immunosorbent assay (ELISA). The results showed that CUMS significantly decreased the levels of 5-HT and 5-HIAA in the hippocampus, with an increase in plasma IL-6, IL-1β, and TNF-α levels. CUMS also reduced open-field activity, sucrose consumption, as well as increased immobility duration in FST and TST. EOPF administration could effectively reverse the alterations in the concentrations of 5-HT and 5-HIAA; reduce the IL-6, IL-1β, and TNF-α levels. Moreover, EOPF could effectively reverse alterations in immobility duration, sucrose consumption, and open-field activity. However, the effect was not dose-dependent. In conclusion, EOPF administration exhibited significant antidepressant-like effects in mice with CUMS-induced depression. The antidepressant activity of EOPF might be related to the relation between alteration of serotonergic responses and anti-inflammatory effects.
Animals
;
Antidepressive Agents
;
administration & dosage
;
Behavior, Animal
;
drug effects
;
Chronic Disease
;
therapy
;
Cytokines
;
blood
;
Depression
;
blood
;
drug therapy
;
physiopathology
;
psychology
;
Disease Models, Animal
;
Humans
;
Male
;
Mice
;
Mice, Inbred ICR
;
Oils, Volatile
;
administration & dosage
;
Perilla frutescens
;
chemistry
;
Plant Oils
;
administration & dosage
;
Stress, Physiological
;
drug effects