1.CLE42 binding induces PXL2 interaction with SERK2.
Shulin MOU ; Xiaoxiao ZHANG ; Zhifu HAN ; Jiawei WANG ; Xinqi GONG ; Jijie CHAI
Protein & Cell 2017;8(8):612-617
Arabidopsis
;
chemistry
;
genetics
;
metabolism
;
Arabidopsis Proteins
;
chemistry
;
genetics
;
metabolism
;
Crystallography, X-Ray
;
Intercellular Signaling Peptides and Proteins
;
chemistry
;
genetics
;
metabolism
;
Protein Conformation
;
Protein-Serine-Threonine Kinases
;
chemistry
;
genetics
;
metabolism
2.Structural insights into the recognition of phosphorylated FUNDC1 by LC3B in mitophagy.
Mengqi LV ; Chongyuan WANG ; Fudong LI ; Junhui PENG ; Bin WEN ; Qingguo GONG ; Yunyu SHI ; Yajun TANG
Protein & Cell 2017;8(1):25-38
Mitophagy is an essential intracellular process that eliminates dysfunctional mitochondria and maintains cellular homeostasis. Mitophagy is regulated by the post-translational modification of mitophagy receptors. Fun14 domain-containing protein 1 (FUNDC1) was reported to be a new receptor for hypoxia-induced mitophagy in mammalian cells and interact with microtubule-associated protein light chain 3 beta (LC3B) through its LC3 interaction region (LIR). Moreover, the phosphorylation modification of FUNDC1 affects its binding affinity for LC3B and regulates selective mitophagy. However, the structural basis of this regulation mechanism remains unclear. Here, we present the crystal structure of LC3B in complex with a FUNDC1 LIR peptide phosphorylated at Ser17 (pS), demonstrating the key residues of LC3B for the specific recognition of the phosphorylated or dephosphorylated FUNDC1. Intriguingly, the side chain of LC3B Lys49 shifts remarkably and forms a hydrogen bond and electrostatic interaction with the phosphate group of FUNDC1 pS. Alternatively, phosphorylated Tyr18 (pY) and Ser13 (pS) in FUNDC1 significantly obstruct their interaction with the hydrophobic pocket and Arg10 of LC3B, respectively. Structural observations are further validated by mutation and isothermal titration calorimetry (ITC) assays. Therefore, our structural and biochemical results reveal a working model for the specific recognition of FUNDC1 by LC3B and imply that the reversible phosphorylation modification of mitophagy receptors may be a switch for selective mitophagy.
Crystallography, X-Ray
;
Membrane Proteins
;
chemistry
;
metabolism
;
Microtubule-Associated Proteins
;
chemistry
;
metabolism
;
Mitochondrial Degradation
;
Mitochondrial Proteins
;
chemistry
;
metabolism
;
Peptides
;
chemistry
;
metabolism
;
Phosphorylation
;
Protein Structure, Quaternary
3.Involvement of nicotinic acetylcholine receptors in amyloid β-fragment-induced intracellular Ca(2+) elevation in cultured rat cortical neurons.
Mei-Na WU ; Xin-Yi LI ; Fen GUO ; Jin-Shun QI
Acta Physiologica Sinica 2009;61(6):517-525
The amyloid β-protein (Aβ)-induced disturbance of intracellular calcium homeostasis has been regarded as the final route whereby Aβ insults neurons. However, the mechanism of Aβ-induced Ca(2+) overloading is still unclear so far. Especially, it remains to be clarified whether nicotinic acetylcholine receptors (nAChRs) are involved in the Aβ-induced elevation of intracellular calcium concentration ([Ca(2+)](i)). In the present study, we observed the effects of Aβ fragments 25-35 (Aβ(25-35)) and 31-35 (Aβ(31-35)) on [Ca(2+)](i) in primary cultured rat cortical neurons using laser-scanning confocal calcium imaging technique, and investigated its probable cholinergic mechanism. The results showed that: (1) Both Aβ(25-35) and Aβ(31-35) induced similar and significant [Ca(2+)](i) elevation in a concentration-dependent manner, and no statistical difference was found between the effects of both peptides; (2) The reverse peptide of Aβ(31-35), i.e. Aβ(35-31), had no effect on [Ca(2+)](i) elevation; (3) Mecamylamine (MCA), a non-specific nAChRs antagonist, significantly and dose-dependently blocked the [Ca(2+)](i) elevation induced by Aβ(25-35) or Aβ(31-35) (4) Dihydro-β-erythroidine (D-β-E), a specific α4β2 subtype nAChRs antagonist, also significantly inhibited the [Ca(2+)](i) elevation induced by Aβ(25-35) and Aβ(31-35), but the effect was weaker than the effect of MCA at the same concentration. These results indicate that Aβ(31-35) may be a shorter active sequence in full length of Aβ molecule, and the overactivation of nAChRs, including α4β2 subtype, may be, at least partly, responsible for the Aβ-induced elevation of [Ca(2+)](i) in cultured rat cortical neurons. Thus, the present study suggests a new potential target of Aβ in the brain, and provides a new insight into the mechanisms by which Aβ impairs the cognitive function in Alzheimer's disease.
Amyloid beta-Peptides
;
chemistry
;
Animals
;
Calcium
;
metabolism
;
Cells, Cultured
;
Neurons
;
metabolism
;
Peptide Fragments
;
chemistry
;
Rats
;
Receptors, Nicotinic
;
metabolism
4.Three-dimensional domain swapping as a mechanism to lock the active conformation in a super-active octamer of SARS-CoV main protease.
Shengnan ZHANG ; Nan ZHONG ; Fei XUE ; Xue KANG ; Xiaobai REN ; Jiaxuan CHEN ; Changwen JIN ; Zhiyong LOU ; Bin XIA
Protein & Cell 2010;1(4):371-383
Proteolytic processing of viral polyproteins is indispensible for the lifecycle of coronaviruses. The main protease (M(pro)) of SARS-CoV is an attractive target for anti-SARS drug development as it is essential for the polyprotein processing. M(pro) is initially produced as part of viral polyproteins and it is matured by autocleavage. Here, we report that, with the addition of an N-terminal extension peptide, M(pro) can form a domain-swapped dimer. After complete removal of the extension peptide from the dimer, the mature M(pro) self-assembles into a novel super-active octamer (AO-M(pro)). The crystal structure of AO-M(pro) adopts a novel fold with four domain-swapped dimers packing into four active units with nearly identical conformation to that of the previously reported M(pro) active dimer, and 3D domain swapping serves as a mechanism to lock the active conformation due to entanglement of polypeptide chains. Compared with the previously well characterized form of M(pro), in equilibrium between inactive monomer and active dimer, the stable AO-M(pro) exhibits much higher proteolytic activity at low concentration. As all eight active sites are bound with inhibitors, the polyvalent nature of the interaction between AO-M(pro) and its polyprotein substrates with multiple cleavage sites, would make AO-M(pro) functionally much more superior than the M(pro) active dimer for polyprotein processing. Thus, during the initial period of SARS-CoV infection, this novel active form AOM(pro) should play a major role in cleaving polyproteins as the protein level is extremely low. The discovery of AOM(pro) provides new insights about the functional mechanism of M(pro) and its maturation process.
Coronavirus
;
metabolism
;
Cysteine Endopeptidases
;
Endopeptidases
;
metabolism
;
Humans
;
Peptides
;
chemistry
;
metabolism
;
Polyproteins
;
chemistry
;
metabolism
;
Protein Binding
;
SARS Virus
;
chemistry
;
metabolism
;
Viral Proteins
6.Optimization of critical medium components for enhancing antibacterial thiopeptide nocathiacin I production with significantly improved quality.
Mao-Yu YANG ; Jia-Wei ZHANG ; Xu-Ri WU ; Yi-Jun CHEN
Chinese Journal of Natural Medicines (English Ed.) 2017;15(4):292-300
Nocathiacin I, a glycosylated thiopeptide antibiotic, displays excellent antibacterial activities against multidrug resistant bacterial pathogens. Previously, a novel nocathiacin I formulation for intravenous administration has been successfully developed and its aqueous solubility is greatly enhanced for clinical application. The purpose of the present study was to increase the fermentation titer of nocathiacin I and reduce or eliminate analogous impurities by screening the medium ingredients using response surface methodology. After a sysmatic optimization, a water-soluble medium containing quality-controllable components was developed and validated, resulting in an increase in the production of nocathiacin I from 150 to 405.8 mg·L at 150-L scale. Meanwhile, the analogous impurities existed in reported processes were greatly reduced or eliminated. Using optimized medium for fermentation, nocathiacin I with pharmaceutically acceptable quality was easily obtained with a recovery of 67%. In conclusion, the results from the present study offer a practical and efficient fermentation process for the production of nocathiacin I as a therapeutic agent.
Actinobacteria
;
growth & development
;
metabolism
;
Anti-Bacterial Agents
;
biosynthesis
;
chemistry
;
Bioreactors
;
Culture Media
;
Fermentation
;
Intercellular Signaling Peptides and Proteins
;
Peptides
;
chemistry
;
metabolism
;
Quality Improvement
7.Advancement of studies on second mitochondrial activator of caspase.
Zhen ZHAO ; Rui HUANG ; Anren KUANG
Journal of Biomedical Engineering 2013;30(3):666-669
Smac is a mitochondrial protein that interacts with inhibitor of apoptosis proteins (IAPs). Upon apoptotic stimuli, the Smac is released into the cytoplasm to inhibit the capase-binding activity of IAPs. The low expression of Smac in tissues has been reported existing in various cancers. Smac plays key roles in prognosis and chemoradiotherapy resistance of malignant tumor besides neoplasm genesis and growth. Furthermore, Smac may be a molecular therapeutic target in cancer patients. Overexpression of Smac by transfecting extrinsic Smac gene or Smac mimetic into tumor cell can improve their sensitivity to radiotherapy and chemotherapy, which has great significance to the treatment of tumor. Our review will focus on the roles of Smac in structure, pro-apoptotic mechanism, tissue distribution and cancer treatment.
Humans
;
Intracellular Signaling Peptides and Proteins
;
chemistry
;
metabolism
;
physiology
;
Mitochondrial Proteins
;
chemistry
;
metabolism
;
physiology
;
Neoplasms
;
therapy
;
Tissue Distribution
8.Crystal structures of NAC domains of human nascent polypeptide-associated complex (NAC) and its αNAC subunit.
Lanfeng WANG ; Wenchi ZHANG ; Lu WANG ; Xuejun C ZHANG ; Xuemei LI ; Zihe RAO
Protein & Cell 2010;1(4):406-416
Nascent polypeptide associated complex (NAC) and its two isolated subunits, αNAC and βNAC, play important roles in nascent peptide targeting. We determined a 1.9 Å resolution crystal structure of the interaction core of NAC heterodimer and a 2.4 Å resolution crystal structure of αNAC NAC domain homodimer. These structures provide detailed information of NAC heterodimerization and αNAC homodimerization. We found that the NAC domains of αNAC and βNAC share very similar folding despite of their relative low identity of amino acid sequences. Furthermore, different electric charge distributions of the two subunits at the NAC interface provide an explanation to the observation that the heterodimer of NAC complex is more stable than the single subunit homodimer. In addition, we successfully built a βNAC NAC domain homodimer model based on homologous modeling, suggesting that NAC domain dimerization is a general property of the NAC family. These 3D structures allow further studies on structure-function relationship of NAC.
Amino Acid Sequence
;
Dimerization
;
Humans
;
Molecular Chaperones
;
chemistry
;
Peptides
;
metabolism
;
Protein Multimerization
9.Molecular tandem repeat strategy for production ofultrashort peptides.
Chen ZHAO ; Duanhua LI ; Jinjun LI ; Lu WANG
Chinese Journal of Biotechnology 2022;38(12):4587-4600
Ultrashort peptides have higher stability, tissue penetrability, biocompatibility, and less immunogenicity, and are widely applied in biology and medicine. GHK (glycyl-l-histidyl-l-lysine) and GQPR (glycyl-l-glutamyl-l-prolyl-l-arginine) can stimulate collagen renewal and inhibit collagen degradation. GHK and GQPR have been used in cosmetic anti-wrinkle skincare and make-up products. The most common approach for ultrashort peptide production is the solid-phase synthesis, which is eco-unfriendly due to heavy usage of organic chemical reagents during the manufacturing process. Here we report a new approach to the production of ultrashort peptides. Recombinant expression of ultrashort peptides is usually unfeasible because of the short amino acid sequences. A vector pET28a-Trxm harboring the thioredoxin gene was first constructed for subsequent fusion expression. The tandem repeats of GHK and GQPR genes were used as the templates for rolling circle amplification (RCA). The RCA reaction was tuned to incorporate noncanonical nucleotides 5-methylcytosine to obtain long DNA fragments. Gene sequences with various lengths were generated through double digestion of Acc65 Ⅰ and Apa Ⅰ. The resulting digestion products were gel recovered by size (from 500 bp to 1 500 bp) and cloned into pET28a-Trxm to obtain the recombinant vector pET28a-Trxm-(TRSP)n. The pET28a-Trxm-(TRSP)n was introduced into E. coli BL21(DE3) to generate a library of Trxm-(TRSP)n sequences with a controlled distribution of lengths. Through double digestion and sequencing, positive clones with tandem repeats n=1, 2, 3, 4, 6, 7, 8, 9 were obtained. Protein expression results showed protein bands with corresponding molecular weight, and the protein expression level decreased as the tandem repeats increased. The expression level of Trxm-(TRSP)1 achieved 50% of the total protein, while the expression level of Trxm-(TRSP)2 was 30% of the total protein. The crude extracts from cell pellets were further treated with enterokinase cleavage, and the supernatants containing (TRSP)1 were collected after ultrafiltration and then subjected to trypsin cleavage. HPLC analysis indicated that the ultrashort peptides GHK and GQPR were successfully obtained through two-step cleavage. This study may facilitate the commercial production of ultrashort peptides.
Escherichia coli/metabolism*
;
Peptides/chemistry*
;
Amino Acid Sequence
;
Gene Library
;
Tandem Repeat Sequences
10.High cell-density fermentation of shark hepatical stimulator analogue in Escherichia coli.
Boping YE ; Zheng PAN ; Huaibiao LI ; Ying WANG ; Heng ZHENG ; Wutong WU
Chinese Journal of Biotechnology 2009;25(9):1371-1378
The potential effects of recombinant shark hepatical stimulator analogue (r-sHSA) in liver disease have been revealed in our previous studies. In order to further evaluate its clinic application, we carried out high cell-density fermentation in 5 L fermentor to get enough products. Based on the trials in shaking flask, we optimized the parameters for 5 L fermentor, including medium composition, medium supplement, inducer concentration and induction time, etc. In detail, the improved LB medium (0.97% glycerol, 0.91% yeast extract, 0.72% tryptone, 0.782% KH2PO4, 0.267% K2HPO4.3H2O, 0.062% MgSO4.7H2O, 0.5% NaCl, pH 7.0) is chosen to cultivate the engineering bacteria with the constant fermentation condition (pH 7.0, and the dissolved oxygen concentration is about 25%-30%). When bacterial culture reaches exponential phase, the modified feeding medium (620 g/L glycerol, 94.8 g/L tryptone, 3.3 mL/L trace elements, and 7.5 g/L MgSO4.7H2O) is then supplied through the method of exponential fed-batch mode. After the optical density (OD600) of engineering bacterial culture reaches to 23, the ultimately concentration of 0.5 mmol/L IPTG is added to induce the expression of r-sHSA for 6 h. Results show that the amount of r-sHSA production is (2.662 +/- 0.041) g/L, which is about 13.7 folds of the one optimized before.
Animals
;
Cloning, Molecular
;
Escherichia coli
;
genetics
;
metabolism
;
Fermentation
;
Liver
;
chemistry
;
Peptides
;
genetics
;
metabolism
;
Recombinant Proteins
;
biosynthesis
;
genetics
;
Sharks
;
metabolism