3.Celastrol inhibits neurotoxicity induced by Cd2.
Fei HE ; Yuan LIU ; Susu LIU ; Na WANG ; Haihong SONG ; Guoliang XIONG ; Jiandong LU ; Changyuan YU ; Shihui WANG
Chinese Journal of Biotechnology 2022;38(9):3443-3452
Cadmium (Cd) is a common heavy metal in the environment. Cd2+ may penetrate the blood-brain barrier and produce neurotoxicity, thus inducing various neurodegenerative diseases. Celastrol is an effective component of Tripterygium wilfordii Hook. F., which has many pharmacological effects such as anti-cancer and anti-inflammatory. Here we explored the effect of celastrol on the corresponding neurotoxicity induced by Cd2+. Cell proliferation test, cell membrane integrity test, and cell morphology were observed to analyze the effect of Cd2+ on the viability of HMC3. The neurotoxicity of Cd2+ and the effect of celastrol on the corresponding neurotoxicity induced by Cd2+ were analyzed by nitric oxide (NO) test, lipid peroxidation (MDA) test, and Western blotting. When the concentration of Cd2+ reached 40 μmol/L, the inhibition rate of HMC3 cell proliferation was (57.17±8.23)% (P < 0.01, n=5), compared with the control group. The cell activity continued to reduce when the Cd2+ concentration further increased. When the concentration of Cd2+ was higher than 40 μmol/L, the cell membrane of HMC3 was significantly damaged, and the damage was dose-dependent. Upon increasing the Cd2+ concentration, the cell morphology began to change and the adhesion also became worse. Cd2+ significantly increased the amount of NO released by HMC3 cells, while celastrol effectively inhibited the NO release of HMC3 cells induced by Cd2+. Cd2+ greatly increased the release of MDA in HMC3 cells, and the level of MDA decreased rapidly upon the addition of 10-7 mol/L celastrol. Cd2+ increased the expression of p-PI3K protein, and the levels of p-PI3K protein and p-AKT protein were inhibited by the addition of celastrol (10‒7 mol/L, 10‒6 mol/L), thus preventing cell apoptosis. In conclusion, celastrol inhibits Cd2+ induced microglial cytotoxicity and plays a neuroprotective role.
Anti-Inflammatory Agents/pharmacology*
;
Apoptosis
;
Cadmium/toxicity*
;
Nitric Oxide/pharmacology*
;
Pentacyclic Triterpenes
;
Phosphatidylinositol 3-Kinases
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Triterpenes/pharmacology*
4.Effect of Celastrol Based on IRAK4/ERK/p38 Signaling Pathway on Proliferation and Apoptosis of Multiple Myeloma Cells.
Xiao-Meng XU ; Di KANG ; Xin-Yu ZHU ; Xiang-Tu KONG ; Hui YU ; Xiao-Li CHEN ; Peng-Jun JIANG ; Hai-Wen NI
Journal of Experimental Hematology 2022;30(1):175-182
OBJECTIVE:
To investigate the effect of celastrol on the proliferation and apoptosis of human multiple myeloma (MM) cell lines, reveal the relationship between IRAK4/ERK/p38 signaling pathway and celastrol regulating the proliferation and apoptosis of H929 and ARP-1 cells, and explore whether celastrol combined with bortezomib has synergistic effect.
METHODS:
CCK-8 method was used to detect the viability of MM cell lines H929 and ARP-1 treated by different concentrations of celastrol, bortezomib, and their combination, and the synergistic effect was determined by Kim's formula. The apoptosis rate of H929 cells and necrosis rate of ARP-1 were detected by Annexin V/PI method. The expression of key proteins and apoptosis proteins in IRAK4/ERK/p38 signaling pathway were detected by Western blot.
RESULTS:
Celastrol could significantly inhibit the proliferation of H929 and ARP-1 cells (r=0.9018, r=0.9244) and induce apoptosis in a time-dependent manner. Compared with the control group, celastrol could significantly up-regulate the expression of PARP and cleaved caspase-3 while down-regulate the expression of p-IRAK4, p-ERK, and p-p38 in H929 and ARP-1 cells. Celastrol and bortezomib alone inhibited the proliferation of H929 and ARP-1 cells. Compared with celastrol and bortezomib alone, their combination had lower cell survival rate and higher apoptosis rate (P<0.05).
CONCLUSION
Celastrol can inhibit the proliferation and promote the apoptosis of H929 and ARP-1 cells, which may be related to inhibiting the phosphorylation of IRAK4 and blocking the activation of IRAK4/ERK/p38 signaling pathway. Celastrol combined with bortezomib has synergistic effect, which can more effectively inhibit the proliferation and induce apoptosis of H929 and ARP-1 cells.
Apoptosis
;
Bortezomib/pharmacology*
;
Cell Line, Tumor
;
Cell Proliferation
;
Humans
;
Interleukin-1 Receptor-Associated Kinases
;
Multiple Myeloma
;
Pentacyclic Triterpenes
;
Signal Transduction
5.Inhibition of three pentacyclic triterpenoids on calcium-induced liver mitochondrial permeability transition in mice.
Xinhui TANG ; Lifang YAN ; Lizhi XU ; Jing GAO
China Journal of Chinese Materia Medica 2011;36(4):496-499
OBJECTIVETo study effects of three pentacyclic triterpenoids, oleanolic acid (OA), ursolic acid (UA) and asiatic acid (AA) on Ca(2+)-induced liver mitochondrial permeability transition (MPT).
METHODEffects of three compounds on liver MPT induced by Ca2+ were assessed by measuring the change in mitochondrial swelling, mitochondrial membrane potential and release of matrix Ca2+ in vitro.
RESULTObvious mitochondrial swelling, loss of mitochondrial membrane potential and release of matrix Ca2+ occurred after the addition of 50 micromol x L(-1) Ca2+. However, preincubation with 50 mg x L(-1) OA, UA or AA significantly blocked the above changes. In addition, it was also found that there are differences in the inhibitions of three compounds on liver MPT induced by Ca2+.
CONCLUSIONThree pentacyclic triterpenoids, OA, UA and AA, have significant mitochondrial protection through blocking on liver MPT and the inhibition on liver MPT of AA is stronger than that of UA and OA.
Animals ; Calcium ; metabolism ; pharmacology ; Membrane Potential, Mitochondrial ; drug effects ; Mice ; Mice, Inbred ICR ; Mitochondria, Liver ; drug effects ; metabolism ; Mitochondrial Membrane Transport Proteins ; drug effects ; Mitochondrial Swelling ; drug effects ; Pentacyclic Triterpenes ; pharmacology
6.Protective effect of asiatic acid from Potentilla chinensis on alcohol hepatic injury in rats.
Gan ZHAO ; Shu-juan LV ; Gang WEI ; Jin-bin WEI ; Xing LIN ; Quan-fang HUANG
China Journal of Chinese Materia Medica 2015;40(14):2866-2870
To study the protective effect and the mechanism of asiatic acid (AA) from Potentilla chinensis on alcohol hepatic injury in rats. Male Wistar rats were randomly divided into six groups: the normal control group, the AA control group (8 mg · kg(-1) AA), the model group (5.0-9.0 g · kg(-1) alcohol) and high, medium and low-dose AA-treated groups (alcohol + 8, 4, 2 mg · kg(-1) AA). Each group was orally administered with the corresponding drugs once a day for 24 weeks. Approximately 1. 5 hours after the final administration, all rats were killed, and their blood samples and hepatic tissues were collected. The AST and ALT in rat serum and the contents of MPO, TNF-α, IL-1β, SOD, GSH-Px, GSH-Rd and MDA in hepatic tissues were detected. The expressions of NF-κB, TLR4, CD14, MyD88, TRIF and protein expression in hepatic tissues were measured by western blot. The pathological changes in liver tissues were observed by histological examination. The results showed that compared with the model group, the AA-treated groups showed significant decreases in serum ALT, AST and MDA and increases in the activities of SOD, GSH-Px, GSH-Rd and MPO. Moreover, AA markedly inhibited the expressions of TNF-α, IL-1β, TLR4, CD14, MyD88 and NF-κB. The histological examination showed alleviated hepatic issue ijury to varying degrees. In short, asiatic acid (AA) from P. chinensis could protect alcohol-induced hepatic injury in rats. Its mechanism may be related to the inhibition of NF-κB inactivation and the reduction of inflammatory response.
Animals
;
Liver
;
drug effects
;
pathology
;
Liver Diseases, Alcoholic
;
prevention & control
;
Male
;
NF-kappa B
;
physiology
;
Pentacyclic Triterpenes
;
pharmacology
;
Potentilla
;
chemistry
;
Protective Agents
;
pharmacology
;
Rats
;
Rats, Wistar
;
Toll-Like Receptor 4
;
antagonists & inhibitors
7.Protective effects of triterpenoids on primarily cultured rat hepatocytes injured by D-galactosamine and carbon tetrachloride.
Kui-fen MA ; Xiang-yi ZHANG ; Luo-yang QI
Journal of Zhejiang University. Medical sciences 2007;36(3):247-254
OBJECTIVETo investigate the protective effects and mechanism of triterpenoids on primarily cultured rat hepatocytes injured by D-galactosamine (D-GalN) or carbon tetrachloride (CCl4).
METHODSRat hepatocytes were isolated by two-step collagenase perfusion and cultured in RPMI 1640 medium. Protective effects of asiatic acid (AA) and beta-glycyrrhetinic acid (GA) were evaluated on hepatocytes injured by D-GalN (2 mmol/L) or CCl4 (10 mmol/L). Cell morphology was observed by light microscope, cell viability was measured by MTT assay, AST and LDH were determined by an automatic analyzer. Fluorescence assay was applied to test reactive oxygen species (ROS), nitric oxide end products (NOx) and reduced glutathione (GSH), and JC-1 staining was used to determine mitochondria membrane potential (DeltaPsim).
RESULTSAST and LDH in medium were decreased when treated with AA and GA after D-GalN injury (P<0.05), furthermore AA enhanced the hepatocyte viability (P<0.05). Moreover, AA and GA significantly reduced ROS and NOx generation, and ameliorated DeltaPsim lost induced by D-GalN. AA also inhibited GSH decrease due to D-GalN and CCl4 treatment.
CONCLUSIONBoth AA and GA could protect hepatocytes from D-GalN and CCl4 injuries, which is associated with reducing intracellular ROS and NOx, reversing GSH depression and ameliorating DeltaPsim lost.
Animals ; Carbon Tetrachloride ; toxicity ; Cell Survival ; drug effects ; Cells, Cultured ; Galactosamine ; toxicity ; Glycyrrhetinic Acid ; pharmacology ; Hepatocytes ; cytology ; drug effects ; metabolism ; Male ; Membrane Potential, Mitochondrial ; drug effects ; Nitric Oxide ; metabolism ; Pentacyclic Triterpenes ; Protective Agents ; pharmacology ; Rats ; Rats, Sprague-Dawley ; Reactive Oxygen Species ; metabolism ; Triterpenes ; pharmacology
8.Protective effects of lupeol and mango extract against androgen induced oxidative stress in Swiss albino mice.
Sahdeo PRASAD ; Neetu KALRA ; Madhulika SINGH ; Yogeshwer SHUKLA
Asian Journal of Andrology 2008;10(2):313-318
AIMTo investigate antioxidant potential of lupeol/mango pulp extract (MPE) in testosterone induced oxidative stress in prostate of male Swiss albino mice.
METHODSOral treatment of lupeol (1 mg/animal) and MPE (1 mL [20% w/v]/animal) was given separately to animals along with subcutaneous injection of testosterone (5 mg/kg body weight) consecutively for 15 days. At the end of the study period, the prostate was dissected out for the determination of reactive oxygen species (ROS) levels, lipid peroxidation and antioxidant enzymes status (catalase, superoxide dismutase, glutathione reductase, glutathione-S-transferase).
RESULTSIn testosterone treated animals, increased ROS resulted in depletion of antioxidant enzymes and increase in lipid peroxidation in mouse prostate. However, lupeol/MPE treatment resulted in a decrease in ROS levels with restoration in the levels of lipid peroxidation and antioxidant enzymes.
CONCLUSIONThe results of the present study demonstrate that lupeol/MPE are effective in combating oxidative stress-induced cellular injury of mouse prostate. Mango and its constituents, therefore, deserve study as a potential chemopreventive agent against prostate cancer.
Animals ; Antioxidants ; pharmacology ; Catalase ; metabolism ; Glutathione Reductase ; metabolism ; Glutathione Transferase ; metabolism ; Lipid Peroxidation ; drug effects ; Male ; Mangifera ; Mice ; Oxidative Stress ; drug effects ; Pentacyclic Triterpenes ; Plant Extracts ; administration & dosage ; Prostate ; drug effects ; enzymology ; Reactive Oxygen Species ; metabolism ; Superoxide Dismutase ; metabolism ; Testosterone ; administration & dosage ; Triterpenes ; administration & dosage
9.The protective effect of asiatic acid against oxygen-glucose deprivation/reoxygenation injury of PC12 cells.
Ju-ping YUAN ; Jian-ming LU ; Yuan LU
Acta Pharmaceutica Sinica 2013;48(11):1738-1742
To study the protective effect and preliminary mechanisms of asiatic acid against oxygen-glucose deprivation/reoxygenation (OGD/R) injury of PC12 cells, Na2S2O4 combined with low glucose induced damage of PC12 cells was served as OGD/R injury model in vitro. MTT method was used to evaluate cell survival. Ultraviolet spectrophotometry was performed to determine lactate dehydrogenase (LDH) leakage, lactic acid (LD) content, intracellular superoxide dismutase (SOD), malonyldialdehyde (MDA), and cellular Caspase-3 activity. Flow cytometry was applied to assay cell apoptosis. Na2S2O4 combined with low glucose induced significant cell survival rate decreasing compared with normal cells. Cell survival rate increasing, LDH leakage alleviating, LD producing inhibiting, SOD activity promotion, MDA content reducing, cell apoptotic rate decreasing and Caspase-3 activity inhibiting were observed when cells were preincubated with different concentration of asiatic acid (10, 1 and 0.1 micromol x L(-1)). Evident protective effect of asiatic acid against OGD/R injured PC12 cells was verified in our experiment, and the possible mechanisms were related to eliminating free radicals and inhibiting cell apoptosis.
Animals
;
Apoptosis
;
drug effects
;
Caspase 3
;
metabolism
;
Cell Survival
;
drug effects
;
Centella
;
chemistry
;
Dose-Response Relationship, Drug
;
Glucose
;
metabolism
;
L-Lactate Dehydrogenase
;
metabolism
;
Lactic Acid
;
metabolism
;
Malondialdehyde
;
metabolism
;
Neuroprotective Agents
;
administration & dosage
;
pharmacology
;
Oxygen
;
metabolism
;
PC12 Cells
;
Pentacyclic Triterpenes
;
administration & dosage
;
isolation & purification
;
pharmacology
;
Plants, Medicinal
;
chemistry
;
Rats
;
Reperfusion Injury
;
metabolism
;
Superoxide Dismutase
;
metabolism
10.Asiatic acid mitigates hyperglycemia and reduces islet fibrosis in Goto-Kakizaki rat, a spontaneous type 2 diabetic animal model.
Xue WANG ; Qian LU ; Dong-Sheng YU ; Yu-Peng CHEN ; Jing SHANG ; Lu-Yong ZHANG ; Hong-Bin SUN ; Jun LIU
Chinese Journal of Natural Medicines (English Ed.) 2015;13(7):529-534
The Goto-Kakizaki (GK) rat is a spontaneous type 2 diabetic animal model, which is characterized by a progressive loss of beta islet cells with fibrosis. In the present study, the hypoglycemic effect of asiatic acid (AA) in GK rats was examined. GK rats receiving AA at a daily dose of 25 mg·kg(-1) for four weeks showed a significant reduction in blood glucose levels. Age-matched normal Wistar rats were given 0.5% sodium carboxymethyl cellulose (CMC-Na) solution for the same periods and used as control. Compared to the normal Wistar rats, GK rats treated with AA showed improvement in insulin resistance partially through decreasing glucose level (P < 0.01) and insulin level (P < 0.05). Furthermore, the results of immunohistochemistry indicate that AA treatment reduced islet fibrosis in GK rats. Fibronectin, a key protein related to islet fibrosis, was over-expressed in GK rats, which was reversed significantly by AA treatment (P < 0.05). These findings suggest that AA has a beneficial effect on lowering blood glucose levels in GK rats and improves fibrosis of islets in diabetes, which may play a role in the prevention of islets dysfunction.
Animals
;
Blood Glucose
;
metabolism
;
Centella
;
chemistry
;
Diabetes Mellitus, Type 2
;
drug therapy
;
pathology
;
Disease Models, Animal
;
Fibronectins
;
metabolism
;
Fibrosis
;
Glucose Tolerance Test
;
Hyperglycemia
;
drug therapy
;
pathology
;
Insulin
;
blood
;
Insulin Resistance
;
Islets of Langerhans
;
drug effects
;
pathology
;
Male
;
Pancreatic Diseases
;
metabolism
;
pathology
;
prevention & control
;
Pentacyclic Triterpenes
;
pharmacology
;
therapeutic use
;
Phytotherapy
;
Plant Extracts
;
pharmacology
;
therapeutic use
;
Rats, Inbred Strains