1.The value of diagnostic nomogram based on CT radiomics for the preoperative differentiation between benign and malignant thyroid follicular neoplasms
Pengzhou TANG ; Caiyue REN ; Yueming WANG ; Zhengrong ZHOU
Chinese Journal of Radiology 2022;56(2):136-141
Objective:To investigate the value of nomogram constructed by CT-based radiomics for differentiating benign and malignant thyroid follicular neoplasms.Methods:Totally 200 post-surgery patients with pathologically confirmed thyroid follicular neoplasms in Fudan University Shanghai Cancer Center from January 2016 to December 2018 were retrospectively analyzed. Among the patients, 46 were follicular thyroid carcinoma (FTC) and 154 patients were follicular thyroid adenoma (FTA). The patients were randomly divided into a training set ( n=140) and validation set ( n=60) using a random number table. CT signs and radiomics features of each patient were analyzed within the LIFEx package. A predictive model was developed by the least absolute shrinkage and selection operator regression to build a nomogram based on selected parameters. The predictive effectiveness of differentiating benign and malignant thyroid follicular neoplasms was evaluated by the area under receiver operating characteristic curve (AUC). Calibration plots were formulated to evaluate the reliability and accuracy of the nomogram based on internal (training set) and external (validation set) validity. The clinical value of the nomogram was estimated through the decision curve analysis. Results:The prediction nomogram was built with 4 selected parameters, including grey level zone length matrix (GLZLM)-gray-level zone length matrix_zone length non-uniformity, GLZLM-gray-level zone length matrix_low gray-level zone emphasis, CONVENTIONAL_HUQ3, CONVENTIONAL_HUmean. In training and validation sets, the AUCs for differentiating FTC and FTA were 0.863 (95%CI 0.746-0.932), 0.792 (95%CI 0.658-0.917), accuracy were 87.9% and 75.0%, sensitivity were 67.9% and 66.7%, specificity were 91.1% and 90.5%, respectively. The calibration curves indicated good consistency between actual observation and prediction for differentiating the malignancy. Decision curve analysis demonstrated the nomogram was clinically useful.Conclusions:The CT radiomics mode shows the certain value and great potential to identify benign or malignant thyroid follicular neoplasms and the nomogram can accurately and intuitively predict the malignancy potential in patients with thyroid follicular neoplasms.
2.Effects of bariatric metabolic surgery on body composition
Beibei CUI ; Liyong ZHU ; Pengzhou LI ; Weizheng LI ; Guohui WANG ; Xulong SUN ; Guangnian JI ; Zhaomei YU ; Haibo TANG ; Xianhao YI ; Jiapu LING ; Shaihong ZHU
Chinese Journal of Digestive Surgery 2020;19(11):1173-1182
Objective:To explore the effects of bariatric metabolic surgery on body composition.Methods:The retrospective cohort study was conducted. The clinicopathological data of 66 patients with metabolic diseases who were admitted to the Third Xiangya Hospital of Central South University from January 2013 to December 2014 were collected. There were 42 males and 24 females, aged (40±11)years, with a range from 17 to 63 years. Of the 66 patients, 27 undergoing laparoscopic sleeve gastrectomy (LSG) and 39 undergoing laparoscopic Roux-en-Y gastric bypass (LRYGB) were allocated into LSG group and LRYGB group, respectively. The body composition of all patients was determined by dual-energy X-ray absorptiometry at preoperation and postoperative 6 months. Observation indicators: (1) the changes of anthropometric parameters, glucolipid metabolism, body fat mass percentage (BF%) and the ratio of Android BF% and Gynoid BF% (A/G ratio) from preoperation to postoperative 6 months; (2) the changes of whole and local body composition from preoperation to postoperative 6 months; (3) analysis of the correlation between BF% and anthropometric parameters, glucolipid metabolism. (4) Follow-up. Follow-up was conducted using outpatient or hospitalization examination to detect the changes of body composition at the time of postoperative 6 month. The follow-up time was up to July 2015. Measurement data with normal distribution were represented as Mean± SD, paired-samples t test was used for intra-group comparison, and independent-samples t test when baseline data were consistency or covariance analysis when baseline data were not consistency was used for inter-group comparison. Measurement data with skewed distribution were represented as M ( P25, P75), and comparison between groups was analyzed using Wilcoxon signed rank test. The correlation test was undertaken with the Pearson bivariate analysis. Results:(1) The changes of anthropometric parameters, glucolipid metabolism, BF% and A/G ratio from preoperation to postoperative 6 months: for patients in the LSG group, the body mass, body mass index (BMI), waist circumference (WC), waist-to-hip ratio (WHR), diastolic blood pressure (DBP), systolic blood pressure (SBP), fasting plasma glucose (FPG), HbA1c, high density lipoprotein cholesterol (HDL-C), triglyceride (TG), whole BF%, arms BF%, legs BF%, trunk BF%, Android BF%, Gynoid BF% and A/G ratio at preoperation and postoperative 6 months were (102±17)kg, (37±5)kg/m 2, (118±14)cm, 1.01±0.06, (94±14)mmHg(1 mmHg=0.133 kPa), (137±15)mmHg, (8.1±4.2)mmol/L, 7.3%±2.4%, (1.11±0.26)mmol/L, 2.14 mmol/L(1.73 mmol/L, 2.59 mmol/L), 40%±6%, 46%±10%, 36%±8%, 42%±6%, 45%±6%, 37%±7%, 1.23±0.18 and (82±15)kg, (29±4)kg/m 2, (101±13)cm, 0.95±0.08, (76±10)mmHg, (118±16)mmHg, (7.2±1.2)mmol/L, 5.4%±0.8%, (1.26±0.32)mmol/L, 1.21 mmol/L(0.88 mmol/L, 1.55 mmol/L), 36%±8%, 41%±9%, 34%±10%, 38%±8%, 41%±8%, 35%±10%, 1.20±0.17, respectively. There was no significant difference in the intra-group comparison of the Gynoid BF% and A/G ratio ( t=1.903, 1.730, P>0.05) and there were significant differences in the intra-group comparison of the rest of above indicators ( t=12.748, 13.283, 9.013, 3.804, 6.031, 6.226, 2.393, 4.287, -2.900, 3.193, 2.932, 5.198, 2.167, 3.357, 3.116, P<0.05). For patients in the LRYGB group, the body mass, BMI, WC, WHR, DBP, SBP, FPG, HbA1c, HDL-C, TG, whole BF%, arms BF%, legs BF%, trunk BF%, Android BF%, Gynoid BF% and A/G ratio at preoperation and postoperative 6 months were (80±12)kg, (28±4)kg/m 2, (98±9)cm, 0.96±0.05, (85±10)mmHg, (134±17)mmHg, (8.6±2.8)mmol/L, 8.3%±1.7%, (1.13±0.26)mmol/L, 2.06 mmol/L(1.15 mmol/L, 3.30 mmol/L), 30%±8%, 29%±11%, 23%±9%, 37%±7%, 40%±7%, 29%±8%, 1.42±0.26 and (69±9)kg, (24±3)kg/m 2, (91±8)cm, 0.93±0.05, (80±9)mmHg, (129±18)mmHg, (7.4±1.8)mmol/L, 7.0%±1.5%, (1.18±0.29)mmol/L, 1.29 mmol/L(0.85 mmol/L, 2.02 mmol/L), 25%±8%, 23%±12%, 20%±9%, 29%±9%, 32%±10%, 25%±9%, 1.29±0.25, respectively. There was no significant difference in the intra-group comparison of the SBP and HDL-C ( t=1.733, -1.073, P>0.05) and there were significant differences in the intra-group comparison of the rest of above indicators ( t=10.525, 10.200, 7.129, 2.887, 2.805, 2.517, 3.699, 2.608, 7.997, 8.018, 6.029, 8.342, 8.069, 5.813, 6.391, P<0.05). There were significant differences in DBP, SBP, HbA1c, trunk BF%, Android BF% and A/G ratio at postoperative 6 months between LSG group and LRYGB group ( F=6.408, t=2.641, F=20.673, 5.140, 5.735, 4.714, P<0.05). (2) The changes of whole and local body composition from preoperation to postoperative 6 months: for patients in the LSG group, the whole fat mass, muscle mass, fat-free mass at preoperation and postoperative 6 months were (38.74±9.68)kg, (57.71±11.62)kg, (60.14±11.95)kg and (26.64±8.29)kg, (48.65±13.80)kg, (51.00±14.27)kg, respectively, showing significant differences in the intra-group comparison of the above indicators ( t=5.256, 5.413, 5.315, P<0.05); the arms fat mass, muscle mass, fat-free mass were (5.19±1.67)kg, (5.78±1.58)kg, (6.10±1.64)kg and (3.73±1.19)kg, (5.10±1.53)kg, (5.43±1.57)kg, respectively, showing significant differences in the intra-group comparison of the above indicators ( t=7.564, 5.405, 5.363, P<0.05); the legs muscle mass and fat-free mass were (19.05±4.19)kg, (19.93±4.35)kg and (15.93±4.71)kg, (16.81±4.87)kg, respectively, showing significant differences in the intra-group comparison of the above indicators ( t=5.623, 5.568, P<0.05); the trunk fat mass and fat-free mass were (21.93±4.90)kg, (29.7±5.94)kg and (14.69±4.79)kg, (24.78±7.02)kg respectively, showing significant differences in the intra-group comparison of the above indicators ( t=8.903, 5.421, P<0.05); the Android fat mass and fat-free mass were (4.16±1.19)kg, (5.01±1.12)kg and (2.57±0.90)kg, (3.83±1.20)kg respectively, showing significant differences in the intra-group comparison of the above indicators ( t=8.288, 7.637, P<0.05); the Gynoid fat mass and fat-free mass were (5.51±1.42)kg, (9.27±1.86)kg and (3.85±1.16)kg, (7.65±2.31)kg, respectively, showing significant differences in the intra-group comparison of the above indicators ( t=7.461, 5.672, P<0.05); the skeletal muscle index were (8.86±1.38)kg/m 2 and (7.49±1.71)kg/m 2, respectively, showing a significant differences in the intra-group comparison ( t=5.724, P<0.05). For patients in the LRYGB group, the whole fat mass, muscle mass, bone mineral content, fat-free mass at preoperation and postoperative 6 months were (23.58±7.80)kg, (51.76±8.35)kg, (2.55±0.48)kg, (54.31±8.63)kg and (16.88±6.86)kg, (49.41±7.70)kg, (2.47±0.50)kg, (51.88±8.05)kg, respectively, showing significant differences in the intra-group comparison of the above indicators ( t=9.001, 3.974, 4.354, 4.075, P<0.05); the arms fat mass were (2.72±2.37)kg and (1.73±1.02)kg, respectively, showing significant differences in the intra-group comparison of the above indicators ( t=3.470, P<0.05); the legs fat mass, muscle mass, fat-free mass were (5.21±2.46)kg, (16.68±3.50)kg, (17.60±3.66)kg and (4.01±2.12)kg, (15.63±2.90)kg, (16.54±3.05)kg, respectively, showing significant differences in the intra-group comparison of the above indicators ( t=6.592, 3.372, 3.319, P<0.05); the trunk fat mass were (14.87±4.11)kg and (10.38±4.00)kg, respectively, showing a significant difference in the intra-group comparison of the above indicators ( t=8.431, P<0.05); the Android fat mass and fat-free mass were (2.61±0.86)kg, (3.96±0.87)kg and (1.81±0.79)kg, (3.78±0.67)kg respectively, showing significant differences in the intra-group comparison of the above indicators ( t=8.032, 2.153, P<0.05); the Gynoid fat mass and fat-free mass were (3.14±1.17)kg, (7.89±1.58)kg and (2.44±0.96)kg, (7.43±1.26)kg, respectively, showing significant differences in the intra-group comparison of the above indicators ( t=6.112, 3.207, P<0.05); the skeletal muscle index were (8.04±1.22)kg/m 2 and (7.43±1.13)kg/m 2, respectively, showing significant differences in the intra-group comparison ( t=4.953, P<0.05). There were significant differences in whole muscle mass, whole fat-free mass, arms fat mass, legs muscle mass, legs fat-free mass, trunk fat-free mass, Android fat-free mass, Gynoid fat-free mass and skeletal muscle index at postoperative 6 months between LSG group and LRYGB group ( F=13.846, 13.614, 23.696, 7.100, 7.127, 15.243, 16.921, 8.625, 5.497, P<0.05). (3) Analysis of the correlation between BF% and anthropometric parameters, glucolipid metabolism: the whole BF% of 66 patients was positively correlated with body mass, BMI, WC and WHR ( r=0.405, 0.663, 0.625, 0.331, P<0.05); the arms BF% was positively correlated with body mass, BMI, WC and WHR ( r=0.432, 0.682, 0.639, 0.309, P<0.05); the legs BF% was positively correlated with body mass, BMI and WC ( r=0.366, 0.646, 0.564, P<0.05); the trunk BF% was positively correlated with body mass, BMI, WC and WHR ( r=0.332, 0.560, 0.554, 0.335, P<0.05); the Android BF% was positively correlated with body mass, BMI, WC and WHR ( r=0.327, 0.537, 0.543, 0.336, P<0.05); the Gynoid BF% was positively correlated with BMI and WC ( r=0.561, 0.488, P<0.05), and negatively correlated with FPG ( r=-0.491, P<0.05); the A/G ratio was negatively correlated with BMI ( r=-0.334, P<0.05), and positively correlated with FPG ( r=0.506, P<0.05); the skeletal muscle index was positively correlated with body mass, BMI, WC and WHR ( r=0.757, 0.641, 0.609, 0.519, P<0.05), and negatively correlated with HDL-C ( r=-0.369, P<0.05). (4) Follow-up: 66 patients were followed up at the time of postoperative 6 month. Conclusions:Both LSG and LRYGB significantly change body composition. LRYGB is superior to LSG in reducing trunk BF% and Android BF%. The effects of the two surgical methods on fat mass and bone mineral content are similar. LSG lead to a more significant decrease in whole muscle mass, and LRYGB lead to a more significant decrease in legs muscle mass and skeletal muscle index.
3.Multi-center Randomized Controlled Clinical Trial of Huangqi Injection Combined with Buzhong Yiqi Acupuncture in Treatment of Chronic Fatigue Syndrome with Qi Deficiency
Chengcheng WANG ; Xing TANG ; Chunmei LI ; Zhongbo WANG ; Yanlin FU ; Min DAI ; Min YANG ; Congcong YU
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(7):163-169
ObjectiveTo investigate the clinical efficacy of Huangqi injection combined with Buzhong Yiqi acupuncture in the treatment of chronic fatigue syndrome (CFS) with Qi deficiency and its effects on TCM syndromes, fatigue symptoms, serum superoxide dismutase (SOD), malondialdehyde (MDA), and oxidized low-density lipoprotein (ox-LDL) levels. MethodA total of 200 patients with CFS of Qi deficiency were randomly divided into a control group (100 cases) and an observation group (100 cases). The control group was treated with vitamin B compounds, and the observation group was treated with Huangqi injection combined with Buzhong Yiqi acupuncture for two weeks. The scores of TCM syndromes, fatigue symptoms, levels of serum SOD, MDA, and ox-LDL and the incidence of adverse reactions were observed and compared before and after treatment in two groups. ResultAfter treatment, the total effective rate of the control group was 54.34% (50/92), while that of the observation group was 88.54% (85/96). The total effective rate of the observation group was higher than that of the control group (χ2=27.13,P<0.05). Compared with those in the two groups before treatment, scores of fatigue self-assessment scale (FSAS), physical fatigue and mental fatigue, and sleep/rest response scores of fatigue in the two groups after treatment were significantly decreased (P<0.05). After treatment, scores of FSAS, physical fatigue and mental fatigue, and sleep/rest response scores of fatigue in the observation group were significantly decreased compared with those in the control group (P<0.05). Compared with those in the two groups before treatment, TCM syndrome scores in the two groups after treatment were significantly decreased (P<0.05). After treatment, TCM syndrome scores in the observation group were significantly decreased compared with those in the control group (P<0.05). Compared with those in the two groups before treatment, MDA levels in the two groups were significantly decreased (P<0.05), ox-LDL levels in the observation group were significantly decreased (P<0.05), and SOD levels were significantly increased (P<0.05). After treatment, compared with those in the control group, the serum MDA and ox-LDL levels in the observation group were significantly decreased (P<0.05), and the serum SOD was significantly increased (P<0.05). No serious adverse events or adverse reactions occurred during this clinical trial. ConclusionHuangqi injection combined with Buzhong Yiqi acupuncture has a good clinical curative effect in the treatment of CFS with Qi deficiency, which can effectively improve the fatigue symptoms of patients, increase the level of SOD, and reduce the level of serum MDA and ox-LDL. It is related to the production of antioxidants, inhibiting the production of lipid peroxides, and improving the body's ability to resist oxidative stress.