1.Macular vessel density and thickness in highly myopic eyes with peripapillary intrachoroidal cavitation
Zhipeng CAI ; Hong ZHANG ; Jinjing ZHANG ; Bo MAO ; Pengyuan GAO
Chinese Journal of Ocular Fundus Diseases 2022;38(6):447-455
Objective:To observe the changes of retinal blood flow density and thickness in the macular region of eyes with high myopia (HM) combined with peripapillary intrachoroidal cavitation (PICC).Methods:A cross-sectional study. From March 2019 to May 2021, 65 patients (65 eyes) diagnosed as PICC (HM+PICC group) in Eye Hospital, China Academy of Chinese Medical Sciences, sex-and age-matched 69 HM patients of 69 eyes (HM group) and 65 healthy people of 65 eyes (control group) were enrolled in this study. The optical coherence tomography angiography was used to scan macular areas in 3 mm×3 mm, and measure the macular fovea and optic disc on superior, inferior, nasal, temporal superficial capillary plexus (SCP) and deep capillary plexus (DCP) vessel density in the foveal and parafoveal region, and macular retinal ganglion cell complex (mGCC) thickness, full retinal thickness. One-way analysis of variance were used to test the difference of the index values among three groups, and then two groups were compared with Bonferroni test. A paired t-test was used to test the difference of the macular vessel density and thickness between the superior and inferior hemifield in three groups. Pearson partial regression analysis was used to calculate the correlations between them at same sites. Results:PICC was located most frequently at the inferior temporal disc border, followed by the inferior nasal region, superior temporal region, and superior nasal region in the HM+PICC group on 57(87.7%, 57/65), 25(38.5%, 25/65), 3(4.6%, 3/65) and 1(1.5%, 1/65 ) eye. There were significant differences in the global and regional full retinal thickness, mGCC thickness, SCP and DCP vessel density among 3 groups ( F=29.097, 51.929, 16.253, 6.135; P<0.001). The macular SCP and DCP vessel density except in the fovea, all regional macular full retinal thickness and mGCC thickness in the HM+PICC group were significantly lower than those in the normal group ( P<0.05). Compared to the HM group, the HM+PICC group had lower all regional mGCC thickness and SCP vessel density, as well as full retinal thickness in the inferior hemifield and DCP vessel density in the foveal region ( P<0.05). Macular vessel density and thickness in the inferior hemifield were significantly lower than those in the superior hemifield ( t=6.356, 11.693, 6.212, 2.936; P<0.01). Pearson partial regression analysis showed the SCP vessel density was positively correlated with corresponding mGCC thickness and full retinal thickness ( r=0.584, 0.534, 0.592, 0.496, 0.485, 0.517; P<0.001). However, there was no significant correlation between the DCP vascular density and mGCC thickness ( P>0.05), and only a weak positive correlation between the DCP vascular density and the full retinal thickness in the inferior hemifield ( r=0.319, P=0.014). However, no association with average and superior full retinal thickness ( r=0.066, 0.002, 0.125, 0.184, 0.016, 0.319; P>0.05). Conclusion:The macular SCP vessel density, mGCC thickness and the full retinal thickness in the inferior hemifield in PICC eyes are lower than those in the HM eyes, especially the mGCC thickness and SCP vessel density in the inferior hemifield, and there is a strong positive correlation between them.
2.Clinical significance of monitoring parathyroid hormone in drainage fluid and serum after total thyroidectomy
Hong GAO ; Lingxia TONG ; Bo SONG ; Pengyuan ZHENG ; Hui JIN
Chinese Journal of Endocrine Surgery 2022;16(5):579-583
Objective:To observe the effect of different clinical factors on the level of parathyroid hormone (PTH) and to predict the possibility of permanent hypothyroidism (PHP) after total thyroidectomy (TT) by monitoring the levels of PTH in serum and drainage fluid after TT.Methods:Retrospective analysis was made on 150 patients who underwent TT for papillary thyroid carcinoma (PTC) in the Department of Thyroid Head and Neck Surgery in Jilin Cancer Hospital from Jan. 2020 to Aug. 2021. The changes of serum PTH were recorded at 1, 3, 7, 30 days and 6 months after surgery. The risk factors of postoperative hypoparathyroidism (HP) were investigated by single factor and multi factor methods. The impairment of parathyroid function was predicted combined with the level of PTH in the drainage fluid 1 day after operation.Results:After TT, serum PTH returned to normal value in most patients 1 month after operation. The proportion of PHP was 3.33% (5/150). Univariate analysis showed that bilateral central lymph node dissection, Hashimoto’s thyroiditis, tumor diameter ≥2 cm and intraoperative selective parathyroid autologous transplantation were risk factors for temporary hypoparathyroidism (THP). Multivariate analysis showed that BCND ( OR=0.322, P=0.001) , intraoperative selective parathyroid autograft ( OR=5.442, P=0.001) and tumor diameter ≥2 cm ( OR=2.247, P=0.003) were independent risk factors for THP. ROC curve was used to compare the predictive effect of postoperative serum and drainage PTH levels on postoperative PHP. The statistical results showed that the highest predictive effect of postoperative PHP was found on the first day of drainage PTH level within 1 week after operation (AUC 0.81) . 54 cases whose serum PTH was lower than normal value on the first day after operation were divided into 4 groups according to the level of PTH in drainage fluid from high to low. The results showed that the lower the level of PTH in drainage fluid, the greater the possibility of PHP ( P<0.05). Conclusions:Most of the patients with low PTH one month after operation develop PHP, while bilateral central lymph node dissection, intraoperative selective parathyroid transplantation, tumor diameter ≥2 cm are risk factors for THP after TT. If the serum PTH is lower than the normal value on the first day after operation, there is a possibility of PTH. The lower the PTH in the drainage fluid, the greater the possibility of PHP, which should be paid attention to in clinical practice.
3.Safety of double and a half layered esophagojejunal anastomosis in radical gastrectomy: A prospective, multi-center, single arm trial
Pengfei MA ; Sen LI ; Gengze WANG ; Xiaosong JING ; Dayong LIU ; Hao ZHENG ; Chaohui LI ; Yunshuai WANG ; Yinzhong WANG ; Yue WU ; Pengyuan ZHAN ; Wenfei DUAN ; Qingquan LIU ; Tao YANG ; Zuomin LIU ; Qiongyou JING ; Zhanwei DING ; Guangfei CUI ; Zhiqiang LIU ; Ganshu XIA ; Guoxing WANG ; Panpan WANG ; Lei GAO ; Desheng HU ; Junli ZHANG ; Yanghui CAO ; Chenyu LIU ; Zhenyu LI ; Jiachen ZHANG ; Changzheng LI ; Zhi LI ; Yuzhou ZHAO
Chinese Journal of Gastrointestinal Surgery 2023;26(10):977-985
Objective:To evaluate the safety of double and a half layered esophagojejunal anastomosis in radical gastrectomy.Methods:This prospective, multi-center, single-arm study was initiated by the Affiliated Cancer Hospital of Zhengzhou University in June 2021 (CRAFT Study, NCT05282563). Participating institutions included Nanyang Central Hospital, Zhumadian Central Hospital, Luoyang Central Hospital, First Affiliated Hospital of Henan Polytechnic University, First Affiliated Hospital of Henan University, Luohe Central Hospital, the People's Hospital of Hebi, First People's Hospital of Shangqiu, Anyang Tumor Hospital, First People's Hospital of Pingdingshan, and Zhengzhou Central Hospital Affiliated to Zhengzhou University. Inclusion criteria were as follows: (1) gastric adenocarcinoma confirmed by preoperative gastroscopy;(2) preoperative imaging assessment indicated that R0 resection was feasible; (3) preoperative assessment showed no contraindications to surgery;(4) esophagojejunostomy planned during the procedure; (5) patients volunteered to participate in this study and gave their written informed consent; (6) ECOG score 0–1; and (7) ASA score I–III. Exclusion criteria were as follows: (1) history of upper abdominal surgery (except laparoscopic cholecystectomy);(2) history of gastric surgery (except endoscopic submucosal dissection and endoscopic mucosal resection); (3) pregnancy or lactation;(4) emergency surgery for gastric cancer-related complications (perforation, hemorrhage, obstruction); (5) other malignant tumors within 5 years or coexisting malignant tumors;(6) arterial embolism within 6 months, such as angina pectoris, myocardial infarction, and cerebrovascular accident; and (7) comorbidities or mental health abnormalities that could affect patients' participation in the study. Patients were eliminated from the study if: (1) radical gastrectomy could not be completed; (2) end-to-side esophagojejunal anastomosis was not performed during the procedure; or (3) esophagojejunal anastomosis reinforcement was not possible. Double and a half layered esophagojejunal anastomosis was performed as follows: (1) Open surgery: the full thickness of the anastomosis is continuously sutured, followed by embedding the seromuscular layer with barbed or 3-0 absorbable sutures. The anastomosis is sutured with an average of six to eight stitches. (2) Laparoscopic surgery: the anastomosis is strengthened by counterclockwise full-layer sutures. Once the anastomosis has been sutured to the right posterior aspect of the anastomosis, the jejunum stump is pulled to the right and the anastomosis turned over to continue to complete reinforcement of the posterior wall. The suture interval is approximately 5 mm. After completing the full-thickness suture, the anastomosis is embedded in the seromuscular layer. Relevant data of patients who had undergone radical gastrectomy in the above 12 centers from June 2021 were collected and analyzed. The primary outcome was safety (e.g., postoperative complications, and treatment). Other studied variables included details of surgery (e.g., surgery time, intraoperative bleeding), postoperative recovery (postoperative time to passing flatus and oral intake, length of hospital stay), and follow-up conditions (quality of life as assessed by Visick scores).Result:[1] From June 2021 to September 2022,457 patients were enrolled, including 355 men and 102 women of median age 60.8±10.1 years and BMI 23.7±3.2 kg/m2. The tumors were located in the upper stomach in 294 patients, mid stomach in 139; and lower stomach in 24. The surgical procedures comprised 48 proximal gastrectomies and 409 total gastrectomies. Neoadjuvant chemotherapy was administered to 85 patients. Other organs were resected in 85 patients. The maximum tumor diameter was 4.3±2.2 cm, number of excised lymph nodes 28.3±15.2, and number of positive lymph nodes five (range one to four. As to pathological stage,83 patients had Stage I disease, 128 Stage II, 237 Stage III, and nine Stage IV. [2] The studied surgery-related variables were as follows: The operation was successfully completed in all patients, 352 via a transabdominal approach, 25 via a transhiatus approach, and 80 via a transthoracoabdominal approach. The whole procedure was performed laparoscopically in 53 patients (11.6%), 189 (41.4%) underwent laparoscopic-assisted surgery, and 215 (47.0%) underwent open surgery. The median intraoperative blood loss was 200 (range, 10–1 350) mL, and the operating time 215.6±66.7 minutes. The anastomotic reinforcement time was 2 (7.3±3.9) minutes for laparoscopic-assisted surgery, 17.6±1.7 minutes for total laparoscopy, and 6.0±1.2 minutes for open surgery. [3] The studied postoperative variables were as follows: The median time to postoperative passage of flatus was 3.1±1.1 days and the postoperative gastrointestinal angiography time 6 (range, 4–13) days. The median time to postoperative oral intake was 7 (range, 2–14) days, and the postoperative hospitalization time 15.8±6.7 days. [4] The safety-related variables were as follows: In total, there were 184 (40.3%) postoperative complications. These comprised esophagojejunal anastomosis complications in 10 patients (2.2%), four (0.9%) being anastomotic leakage (including two cases of subclinical leakage and two of clinical leakage; all resolved with conservative treatment); and six patients (1.3%) with anastomotic stenosis (two who underwent endoscopic balloon dilation 21 and 46 days after surgery, the others improved after a change in diet). There was no anastomotic bleeding. Non-anastomotic complications occurred in 174 patients (38.1%). All patients attended for follow-up at least once, the median follow-up time being 10 (3–18) months. Visick grades were as follows: Class I, 89.1% (407/457); Class II, 7.9% (36/457); Class III, 2.6% (12/457); and Class IV 0.4% (2/457).Conclusion:Double and a half layered esophagojejunal anastomosis in radical gastrectomy is safe and feasible.
4.Safety of double and a half layered esophagojejunal anastomosis in radical gastrectomy: A prospective, multi-center, single arm trial
Pengfei MA ; Sen LI ; Gengze WANG ; Xiaosong JING ; Dayong LIU ; Hao ZHENG ; Chaohui LI ; Yunshuai WANG ; Yinzhong WANG ; Yue WU ; Pengyuan ZHAN ; Wenfei DUAN ; Qingquan LIU ; Tao YANG ; Zuomin LIU ; Qiongyou JING ; Zhanwei DING ; Guangfei CUI ; Zhiqiang LIU ; Ganshu XIA ; Guoxing WANG ; Panpan WANG ; Lei GAO ; Desheng HU ; Junli ZHANG ; Yanghui CAO ; Chenyu LIU ; Zhenyu LI ; Jiachen ZHANG ; Changzheng LI ; Zhi LI ; Yuzhou ZHAO
Chinese Journal of Gastrointestinal Surgery 2023;26(10):977-985
Objective:To evaluate the safety of double and a half layered esophagojejunal anastomosis in radical gastrectomy.Methods:This prospective, multi-center, single-arm study was initiated by the Affiliated Cancer Hospital of Zhengzhou University in June 2021 (CRAFT Study, NCT05282563). Participating institutions included Nanyang Central Hospital, Zhumadian Central Hospital, Luoyang Central Hospital, First Affiliated Hospital of Henan Polytechnic University, First Affiliated Hospital of Henan University, Luohe Central Hospital, the People's Hospital of Hebi, First People's Hospital of Shangqiu, Anyang Tumor Hospital, First People's Hospital of Pingdingshan, and Zhengzhou Central Hospital Affiliated to Zhengzhou University. Inclusion criteria were as follows: (1) gastric adenocarcinoma confirmed by preoperative gastroscopy;(2) preoperative imaging assessment indicated that R0 resection was feasible; (3) preoperative assessment showed no contraindications to surgery;(4) esophagojejunostomy planned during the procedure; (5) patients volunteered to participate in this study and gave their written informed consent; (6) ECOG score 0–1; and (7) ASA score I–III. Exclusion criteria were as follows: (1) history of upper abdominal surgery (except laparoscopic cholecystectomy);(2) history of gastric surgery (except endoscopic submucosal dissection and endoscopic mucosal resection); (3) pregnancy or lactation;(4) emergency surgery for gastric cancer-related complications (perforation, hemorrhage, obstruction); (5) other malignant tumors within 5 years or coexisting malignant tumors;(6) arterial embolism within 6 months, such as angina pectoris, myocardial infarction, and cerebrovascular accident; and (7) comorbidities or mental health abnormalities that could affect patients' participation in the study. Patients were eliminated from the study if: (1) radical gastrectomy could not be completed; (2) end-to-side esophagojejunal anastomosis was not performed during the procedure; or (3) esophagojejunal anastomosis reinforcement was not possible. Double and a half layered esophagojejunal anastomosis was performed as follows: (1) Open surgery: the full thickness of the anastomosis is continuously sutured, followed by embedding the seromuscular layer with barbed or 3-0 absorbable sutures. The anastomosis is sutured with an average of six to eight stitches. (2) Laparoscopic surgery: the anastomosis is strengthened by counterclockwise full-layer sutures. Once the anastomosis has been sutured to the right posterior aspect of the anastomosis, the jejunum stump is pulled to the right and the anastomosis turned over to continue to complete reinforcement of the posterior wall. The suture interval is approximately 5 mm. After completing the full-thickness suture, the anastomosis is embedded in the seromuscular layer. Relevant data of patients who had undergone radical gastrectomy in the above 12 centers from June 2021 were collected and analyzed. The primary outcome was safety (e.g., postoperative complications, and treatment). Other studied variables included details of surgery (e.g., surgery time, intraoperative bleeding), postoperative recovery (postoperative time to passing flatus and oral intake, length of hospital stay), and follow-up conditions (quality of life as assessed by Visick scores).Result:[1] From June 2021 to September 2022,457 patients were enrolled, including 355 men and 102 women of median age 60.8±10.1 years and BMI 23.7±3.2 kg/m2. The tumors were located in the upper stomach in 294 patients, mid stomach in 139; and lower stomach in 24. The surgical procedures comprised 48 proximal gastrectomies and 409 total gastrectomies. Neoadjuvant chemotherapy was administered to 85 patients. Other organs were resected in 85 patients. The maximum tumor diameter was 4.3±2.2 cm, number of excised lymph nodes 28.3±15.2, and number of positive lymph nodes five (range one to four. As to pathological stage,83 patients had Stage I disease, 128 Stage II, 237 Stage III, and nine Stage IV. [2] The studied surgery-related variables were as follows: The operation was successfully completed in all patients, 352 via a transabdominal approach, 25 via a transhiatus approach, and 80 via a transthoracoabdominal approach. The whole procedure was performed laparoscopically in 53 patients (11.6%), 189 (41.4%) underwent laparoscopic-assisted surgery, and 215 (47.0%) underwent open surgery. The median intraoperative blood loss was 200 (range, 10–1 350) mL, and the operating time 215.6±66.7 minutes. The anastomotic reinforcement time was 2 (7.3±3.9) minutes for laparoscopic-assisted surgery, 17.6±1.7 minutes for total laparoscopy, and 6.0±1.2 minutes for open surgery. [3] The studied postoperative variables were as follows: The median time to postoperative passage of flatus was 3.1±1.1 days and the postoperative gastrointestinal angiography time 6 (range, 4–13) days. The median time to postoperative oral intake was 7 (range, 2–14) days, and the postoperative hospitalization time 15.8±6.7 days. [4] The safety-related variables were as follows: In total, there were 184 (40.3%) postoperative complications. These comprised esophagojejunal anastomosis complications in 10 patients (2.2%), four (0.9%) being anastomotic leakage (including two cases of subclinical leakage and two of clinical leakage; all resolved with conservative treatment); and six patients (1.3%) with anastomotic stenosis (two who underwent endoscopic balloon dilation 21 and 46 days after surgery, the others improved after a change in diet). There was no anastomotic bleeding. Non-anastomotic complications occurred in 174 patients (38.1%). All patients attended for follow-up at least once, the median follow-up time being 10 (3–18) months. Visick grades were as follows: Class I, 89.1% (407/457); Class II, 7.9% (36/457); Class III, 2.6% (12/457); and Class IV 0.4% (2/457).Conclusion:Double and a half layered esophagojejunal anastomosis in radical gastrectomy is safe and feasible.