1.The technology of fecal microbiota transplantation and its application progress
Shuo YUAN ; Yi-fan ZHANG ; Peng GAO ; Jun LEI ; Ying-yuan LU ; Peng-fei TU ; Yong JIANG
Acta Pharmaceutica Sinica 2025;60(1):82-95
Fecal microbiota transplantation (FMT) technology originated in China during the Eastern Jin Dynasty and has rapidly developed over the past two decades, becoming a primary method for studying the causal relationship between gut microbiota and the occurrence and progression of diseases. At the same time, the therapeutic effects of FMT in the field of gastrointestinal diseases have gained widespread recognition and are gradually expanding into other disease areas. The FMT procedure is relatively complex, and there is currently no standardized method; its success is influenced by various factors, including the donor, recipient, processing of the fecal material, and the method of implantation. Given the increasingly recognized relationship between gut microbiota and various diseases, FMT has become a research hotspot in both scientific studies and clinical applications, achieving a series of significant advancements. To help researchers better understand this technology, this paper will outline the development history of FMT, summarize common operational methods in research and clinical settings, review its application progress, and look forward to future development directions.
2.Rapid characterization and identification of non-volatile components in Rhododendron tomentosum by UHPLC-Q-TOF-MS method.
Su-Ping XIAO ; Long-Mei LI ; Bin XIE ; Hong LIANG ; Qiong YIN ; Jian-Hui LI ; Jie DU ; Ji-Yong WANG ; Run-Huai ZHAO ; Yan-Qin XU ; Yun-Bo SUN ; Zong-Yuan LU ; Peng-Fei TU
China Journal of Chinese Materia Medica 2025;50(11):3054-3069
This study aimed to characterize and identify the non-volatile components in aqueous and ethanolic extracts of the stems and leaves of Rhododendron tomentosum by using sensitive and efficient ultra-performance liquid chromatography-quadrupole-time of flight mass spectrometry(UHPLC-Q-TOF-MS) combined with a self-built information database. By comparing with reference compounds, analyzing fragment ion information, searching relevant literature, and using a self-built information database, 118 compounds were identified from the aqueous and ethanolic extracts of R. tomentosum, including 35 flavonoid glycosides, 15 phenolic glycosides, 12 flavonoids, 7 phenolic acids, 7 phenylethanol glycosides, 6 tannins, 6 phospholipids, 5 coumarins, 5 monoterpene glycosides, 6 triterpenes, 3 fatty acids, and 11 other types of compounds. Among them, 102 compounds were reported in R. tomentosum for the first time, and 36 compounds were identified by comparing them with reference compounds. The chemical components in the ethanolic and aqueous extracts of R. tomentosum leaves and stems showed slight differences, with 84 common chemical components accounting for 71.2% of the total 118 compounds. This study systematically characterized and identified the non-volatile chemical components in the ethanolic and aqueous extracts of R. tomentosum for the first time. The findings provide a reference for active ingredient research, quality control, and product development of R. tomentosum.
Rhododendron/chemistry*
;
Chromatography, High Pressure Liquid/methods*
;
Drugs, Chinese Herbal/chemistry*
;
Mass Spectrometry/methods*
;
Plant Leaves/chemistry*
3.Effects of human umbilical cord-derived mesenchymal stem cell therapy for cavernous nerve injury-induced erectile dysfunction in the rat model.
Wei WANG ; Ying LIU ; Zi-Hao ZHOU ; Kun PANG ; Jing-Kai WANG ; Peng-Fei HUAN ; Jing-Ru LU ; Tao ZHU ; Zuo-Bin ZHU ; Cong-Hui HAN
Asian Journal of Andrology 2025;27(4):508-515
Stem cell treatment may enhance erectile dysfunction (ED) in individuals with cavernous nerve injury (CNI). Nevertheless, no investigations have directly ascertained the implications of varying amounts of human umbilical cord-derived mesenchymal stem cells (HUC-MSCs) on ED. We compare the efficacy of three various doses of HUC-MSCs as a therapeutic strategy for ED. Sprague-Dawley rats (total = 175) were randomly allocated into five groups. A total of 35 rats underwent sham surgery and 140 rats endured bilateral CNI and were treated with vehicles or doses of HUC-MSCs (1 × 10 6 cells, 5 × 10 6 cells, and 1 × 10 7 cells in 0.1 ml, respectively). Penile tissues were harvested for histological analysis on 1 day, 3 days, 7 days, 14 days, 28 days, 60 days, and 90 days postsurgery. It was found that varying dosages of HUC-MSCs enhanced the erectile function of rats with bilateral CNI and ED. Moreover, there was no significant disparity in the effectiveness of various dosages of HUC-MSCs. However, the expression of endothelial markers (rat endothelial cell antigen-1 [RECA-1] and endothelial nitric oxide synthase [eNOS]), smooth muscle markers (alpha smooth muscle actin [α-SMA] and desmin), and neural markers (neurofilament [RECA-1] and neurogenic nitric oxide synthase [nNOS]) increased significantly with prolonged treatment time. Masson's staining demonstrated an increased in the smooth muscle cell (SMC)/collagen ratio. Significant changes were detected in the microstructures of various types of cells. In vivo imaging system (IVIS) analysis showed that at the 1 st day, the HUC-MSCs implanted moved to the site of damage. Additionally, the oxidative stress levels were dramatically reduced in the penises of rats administered with HUC-MSCs.
Male
;
Animals
;
Erectile Dysfunction/metabolism*
;
Rats, Sprague-Dawley
;
Mesenchymal Stem Cell Transplantation/methods*
;
Rats
;
Penis/pathology*
;
Humans
;
Disease Models, Animal
;
Umbilical Cord/cytology*
;
Peripheral Nerve Injuries/complications*
;
Mesenchymal Stem Cells
;
Nitric Oxide Synthase Type III/metabolism*
;
Actins/metabolism*
;
Nitric Oxide Synthase Type I/metabolism*
4.Alginate lyase immobilized Chlamydomonas algae microrobots: minimally invasive therapy for biofilm penetration and eradication.
Xiaoting ZHANG ; Huaan LI ; Lu LIU ; Yanzhen SONG ; Lishan ZHANG ; Jiajun MIAO ; Jiamiao JIANG ; Hao TIAN ; Chang LIU ; Fei PENG ; Yingfeng TU
Acta Pharmaceutica Sinica B 2025;15(6):3259-3272
Bacterial biofilms can make traditional antibiotics impenetrable and even promote the development of antibiotic-resistant strains. Therefore, non-antibiotic strategies to effectively penetrate and eradicate the formed biofilms are urgently needed. Here, we demonstrate the development of self-propelled biohybrid microrobots that can enhance the degradation and penetration effects for Pseudomonas aeruginosa biofilms in minimally invasive strategy. The biohybrid microrobots (CR@Alg) are constructed by surface modification of Chlamydomonas reinhardtii (CR) microalgae with alginate lyase (Alg) via biological orthogonal reaction. By degrading the biofilm components, the number of CR@Alg microrobots with fast-moving capability penetrating the biofilm increases by around 2.4-fold compared to that of microalgae. Massive reactive oxygen species are subsequently generated under laser irradiation due to the presence of chlorophyll, inherent photosensitizers of microalgae, thus triggering photodynamic therapy (PDT) to combat bacteria. Our algae-based microrobots with superior biocompatibility eliminate biofilm-infections efficiently and tend to suppress the inflammatory response in vivo, showing huge promise for the active treatment of biofilm-associated infections.
5.Endoplasmic reticulum membrane remodeling by targeting reticulon-4 induces pyroptosis to facilitate antitumor immune.
Mei-Mei ZHAO ; Ting-Ting REN ; Jing-Kang WANG ; Lu YAO ; Ting-Ting LIU ; Ji-Chao ZHANG ; Yang LIU ; Lan YUAN ; Dan LIU ; Jiu-Hui XU ; Peng-Fei TU ; Xiao-Dong TANG ; Ke-Wu ZENG
Protein & Cell 2025;16(2):121-135
Pyroptosis is an identified programmed cell death that has been highly linked to endoplasmic reticulum (ER) dynamics. However, the crucial proteins for modulating dynamic ER membrane curvature change that trigger pyroptosis are currently not well understood. In this study, a biotin-labeled chemical probe of potent pyroptosis inducer α-mangostin (α-MG) was synthesized. Through protein microarray analysis, reticulon-4 (RTN4/Nogo), a crucial regulator of ER membrane curvature, was identified as a target of α-MG. We observed that chemically induced proteasome degradation of RTN4 by α-MG through recruiting E3 ligase UBR5 significantly enhances the pyroptosis phenotype in cancer cells. Interestingly, the downregulation of RTN4 expression significantly facilitated a dynamic remodeling of ER membrane curvature through a transition from tubules to sheets, consequently leading to rapid fusion of the ER with the cell plasma membrane. In particular, the ER-to-plasma membrane fusion process is supported by the observed translocation of several crucial ER markers to the "bubble" structures of pyroptotic cells. Furthermore, α-MG-induced RTN4 knockdown leads to pyruvate kinase M2 (PKM2)-dependent conventional caspase-3/gasdermin E (GSDME) cleavages for pyroptosis progression. In vivo, we observed that chemical or genetic RTN4 knockdown significantly inhibited cancer cells growth, which further exhibited an antitumor immune response with anti-programmed death-1 (anti-PD-1). In translational research, RTN4 high expression was closely correlated with the tumor metastasis and death of patients. Taken together, RTN4 plays a fundamental role in inducing pyroptosis through the modulation of ER membrane curvature remodeling, thus representing a prospective druggable target for anticancer immunotherapy.
Pyroptosis/immunology*
;
Humans
;
Endoplasmic Reticulum/immunology*
;
Animals
;
Nogo Proteins/antagonists & inhibitors*
;
Mice
;
Cell Line, Tumor
;
Xanthones/pharmacology*
;
Neoplasms/pathology*
;
Mice, Nude
6.Targeting AMPK related signaling pathways: A feasible approach for natural herbal medicines to intervene non-alcoholic fatty liver disease.
Yongqing CAI ; Lu FANG ; Fei CHEN ; Peiling ZHONG ; Xiangru ZHENG ; Haiyan XING ; Rongrong FAN ; Lie YUAN ; Wei PENG ; Xiaoli LI
Journal of Pharmaceutical Analysis 2025;15(1):101052-101052
Non-alcoholic fatty liver disease (NAFLD) is a metabolic disease characterized by abnormal deposition of lipid in hepatocytes. If not intervened in time, NAFLD may develop into liver fibrosis or liver cancer, and ultimately threatening life. NAFLD has complicated etiology and pathogenesis, and there are no effective therapeutic means and specific drugs. Currently, insulin sensitizers, lipid-lowering agents and hepatoprotective agents are often used for clinical intervention, but these drugs have obvious side effects, and their effectiveness and safety need to be further confirmed. Adenosine monophosphate (AMP)-activated protein kinase (AMPK) plays a central role in maintaining energy homeostasis. Activated AMPK can enhance lipid degradation, alleviate insulin resistance (IR), suppress oxidative stress and inflammatory response, and regulate autophagy, thereby alleviating NAFLD. Natural herbal medicines have received extensive attention recently because of their regulatory effects on AMPK and low side effects. In this article, we reviewed the biologically active natural herbal medicines (such as natural herbal medicine formulas, extracts, polysaccharides, and monomers) that reported in recent years to treat NAFLD via regulating AMPK, which can serve as a foundation for subsequent development of candidate drugs for NAFLD.
7.Comparison of clinical features and outcomes of proliferative, fibrotic, and mixed subtypes of IgG4-related disease: A retrospective cohort study
Linyi PENG ; Xinlu ZHANG ; Jiaxin ZHOU ; Jieqiong LI ; Zheng LIU ; Hui LU ; Yu PENG ; Yunyun FEI ; Yan ZHAO ; Xiaofeng ZENG ; Wen ZHANG
Chinese Medical Journal 2024;137(3):303-311
Background::Immunoglobulin G4-related disease (IgG4-RD) is a recently recognized immune-mediated disorder that can affect almost any organ in the human body. IgG4-RD can be categorized into proliferative and fibrotic subtypes based on patients’ clinicopathological characteristics. This study aimed to compare the clinical manifestations, laboratory findings, and treatment outcomes of IgG4-RD among different subtypes.Methods::We prospectively enrolled 622 patients with newly diagnosed IgG4-RD at Peking Union Medical College Hospital from March 2011 to August 2021. The patients were divided into three groups according to their clinicopathological characteristics: proliferative, fibrotic, and mixed subtypes. We compared demographic features, clinical manifestations, organ involvement, laboratory tests, and treatment agents across three subtypes. We then assessed the differences in treatment outcomes among 448 patients receiving glucocorticoids alone or in combination with immunosuppressants. Moreover, risk factors of relapse were revealed by applying the univariate and multivariate Cox regression analysis.Results::We classified the 622 patients into three groups consisting of 470 proliferative patients, 55 fibrotic patients, and 97 mixed patients, respectively. We found that gender distribution, age, disease duration, and frequency of allergy history were significantly different among subgroups. In terms of organ involvement, submandibular and lacrimal glands were frequently involved in the proliferative subtype, while retroperitoneum was the most commonly involved site in both fibrotic subtype and mixed subtype. The comparison of laboratory tests revealed that eosinophils ( P = 0.010), total IgE ( P = 0.006), high-sensitivity C-reactive protein ( P <0.001), erythrocyte sedimentation rate ( P <0.001), complement C4 ( P <0.001), IgG ( P = 0.001), IgG1 (P <0.001), IgG4 (P <0.001), and IgA ( P <0.001), at baseline were significantly different among three subtypes. Compared with proliferative and mixed subtypes, the fibrotic subtype showed the lowest rate of relapse (log-rank P = 0.014). Conclusions::Our study revealed the differences in demographic characteristics, clinical manifestations, organ involvement, laboratory tests, treatment agents, and outcomes across proliferative, fibrotic, and mixed subtypes in the retrospective cohort study. Given significant differences in relapse-free survival among the three subtypes, treatment regimens, and follow-up frequency should be considered separately according to different subtypes.Trial Registration::ClinicalTrials. gov, NCT01670695.
8.Nanomaterial-based Therapeutics for Biofilm-generated Bacterial Infections
Zhuo-Jun HE ; Yu-Ying CHEN ; Yang ZHOU ; Gui-Qin DAI ; De-Liang LIU ; Meng-De LIU ; Jian-Hui GAO ; Ze CHEN ; Jia-Yu DENG ; Guang-Yan LIANG ; Li WEI ; Peng-Fei ZHAO ; Hong-Zhou LU ; Ming-Bin ZHENG
Progress in Biochemistry and Biophysics 2024;51(7):1604-1617
Bacterial biofilms gave rise to persistent infections and multi-organ failure, thereby posing a serious threat to human health. Biofilms were formed by cross-linking of hydrophobic extracellular polymeric substances (EPS), such as proteins, polysaccharides, and eDNA, which were synthesized by bacteria themselves after adhesion and colonization on biological surfaces. They had the characteristics of dense structure, high adhesiveness and low drug permeability, and had been found in many human organs or tissues, such as the brain, heart, liver, spleen, lungs, kidneys, gastrointestinal tract, and skeleton. By releasing pro-inflammatory bacterial metabolites including endotoxins, exotoxins and interleukin, biofilms stimulated the body’s immune system to secrete inflammatory factors. These factors triggered local inflammation and chronic infections. Those were the key reason for the failure of traditional clinical drug therapy for infectious diseases.In order to cope with the increasingly severe drug-resistant infections, it was urgent to develop new therapeutic strategies for bacterial-biofilm eradication and anti-bacterial infections. Based on the nanoscale structure and biocompatible activity, nanobiomaterials had the advantages of specific targeting, intelligent delivery, high drug loading and low toxicity, which could realize efficient intervention and precise treatment of drug-resistant bacterial biofilms. This paper highlighted multiple strategies of biofilms eradication based on nanobiomaterials. For example, nanobiomaterials combined with EPS degrading enzymes could be used for targeted hydrolysis of bacterial biofilms, and effectively increased the drug enrichment within biofilms. By loading quorum sensing inhibitors, nanotechnology was also an effective strategy for eradicating bacterial biofilms and recovering the infectious symptoms. Nanobiomaterials could intervene the bacterial metabolism and break the bacterial survival homeostasis by blocking the uptake of nutrients. Moreover, energy-driven micro-nano robotics had shown excellent performance in active delivery and biofilm eradication. Micro-nano robots could penetrate physiological barriers by exogenous or endogenous driving modes such as by biological or chemical methods, ultrasound, and magnetic field, and deliver drugs to the infection sites accurately. Achieving this using conventional drugs was difficult. Overall, the paper described the biological properties and drug-resistant molecular mechanisms of bacterial biofilms, and highlighted therapeutic strategies from different perspectives by nanobiomaterials, such as dispersing bacterial mature biofilms, blocking quorum sensing, inhibiting bacterial metabolism, and energy driving penetration. In addition, we presented the key challenges still faced by nanobiomaterials in combating bacterial biofilm infections. Firstly, the dense structure of EPS caused biofilms spatial heterogeneity and metabolic heterogeneity, which created exacting requirements for the design, construction and preparation process of nanobiomaterials. Secondly, biofilm disruption carried the risk of spread and infection the pathogenic bacteria, which might lead to other infections. Finally, we emphasized the role of nanobiomaterials in the development trends and translational prospects in biofilm treatment.
9.Physicochemical Processes of Biofilm Formation on The Surface of Structures in Water
Kai SHEN ; Fei GAO ; Xu-Qiang HUANG ; Xiao-Peng LU ; Hui-Min ZHOU ; Wei-Rong LI ; Di TIE
Progress in Biochemistry and Biophysics 2024;51(1):145-157
Microorganisms can form biofilms, complex, heterogeneous, multicellular communities that adhere to surfaces. Biofilm formation on the surface of structures in water will accelerate structures’ corrosion, seriously affect their service efficiency and life, and significantly impact the growth of animals, plants, and human life. Hence, clarifying the mechanism of biofilm formation contributes to developing new strategies to control biofilm formation on surface and then reduce infections, biofouling, and contaminations. Biofilm-targeting strategies include the regulation of established biofilms or the modulation of single-cell attachment. In most studies, physicochemical mechanism is frequently applied to explain the initial bacterial adhesion phenomena but rarely to explain other stages of biofilm formation. This review presents a five-step comprehensive description of the physicochemical process from film formation to biofilm maturation: (1) period of film formation; (2) period of bacterial adhesion; (3) period of extracellular-polymeric-substances (EPSs) membrane formation; (4) period of regulating biofilm by quorum sensing (QS); (5) period of biofilm maturation. We first clarify how the film formed by compound molecules affects the surface’s physicochemical properties and initial adhesion, summarizing many factors that affect bacterial adhesion. We then review the types of EPSs and signal molecules secreted by bacteria after irreversible adhesion, as well as their role and QS mechanism in biofilm maturation. Finally, we discuss how bacteria or microcolonies separate from the mature biofilm by physicochemical action and summarize the morphology and adhesion characterization methods after the biofilm matures. This review redefines the role of physicochemical in the whole process of biofilm formation and provides a theoretical basis for the prevention, removal, and utilization of biofilm and other related research fields.
10.Pharmacokinetics and pharmacodynamics studies of azithromycin capsules in healthy Chinese subjects
Peng-Fei XIE ; Yuan-Lu CHEN ; Han CHEN ; Yan ZHOU ; Peng YANG ; Li-Zhong NIAN ; Li-Ying ZUO ; Yong-Dong ZHANG
The Chinese Journal of Clinical Pharmacology 2024;40(1):97-101
Objective To evaluate the bioequivalence of the test preparation and reference preparation of azithromycin capsules in healthy Chinese subjects.Methods A total of 48 subjects were enrolled in this study using a randomized,open,two-sequence,cross design.Each subject received a single oral dose of azithromycin capsules test drug(T)or reference drug(R)for 250 mg.The concentrations of azithromycin in plasma were determined by Liquid Chromatograph Mass Spectrometer,and the pharmacokinetic parameters were calculated by WinNonlin 8.1 software to evaluate the bioequivalence.Results The main pharmacokinetic parameters of azithromycin after a single fasting dose of the test drug and the reference drug were as follows:the Cmax were respectively(319.89±127.35)and(330.41±122.11)ng·mL-1;AUC0-192h were respectively(2 423.04±587.15)and(2 489.97±685.73)ng·h·mL-1;AUC0-∞ were respectively(2 753.40±644.96)and(2 851.71±784.05)ng·h·mL-;tmax were respectively(2.60±1.11)and(2.62±1.13)h;t1/2 were respectively(76.76±15.14)and(79.83±17.14)h.The 90%confidence intervals for the geometric mean ratios of Cmax,AUC0-192h and AUC0-∞ of T and R were 87.52%-107.18%,91.46%-105.80%and 91.17%-105.06%,respectively.Conclusion The test preparation of azithromycin capsule was bioequivalent to the reference preparation under fasting condition.

Result Analysis
Print
Save
E-mail