1.Novel insights into histone lysine methyltransferases in cancer therapy:From epigenetic regulation to selective drugs
Qili LIAO ; Jie YANG ; Shengfang GE ; Peiwei CHAI ; Jiayan FAN ; Renbing JIA
Journal of Pharmaceutical Analysis 2023;13(2):127-141
The reversible and precise temporal and spatial regulation of histone lysine methyltransferases(KMTs)is essential for epigenome homeostasis.The dysregulation of KMTs is associated with tumor initiation,metastasis,chemoresistance,invasiveness,and the immune microenvironment.Therapeutically,their promising effects are being evaluated in diversified preclinical and clinical trials,demonstrating encouraging outcomes in multiple malignancies.In this review,we have updated recent understandings of KMTs'functions and the development of their targeted inhibitors.First,we provide an updated overview of the regulatory roles of several KMT activities in oncogenesis,tumor suppression,and im-mune regulation.In addition,we summarize the current targeting strategies in different cancer types and multiple ongoing clinical trials of combination therapies with KMT inhibitors.In summary,we endeavor to depict the regulation of KMT-mediated epigenetic landscape and provide potential epigenetic targets in the treatment of cancers.
2. Effect of erythrocytes, plasma proteins, and lysosomes on systemic exposure to tetrandrine and fangchinoline
Peiwei LIAO ; Wenxin WANG ; Chuan LI ; Peiwei LIAO ; Wenxin WANG ; Nannan TIAN ; Xueshan ZENG ; Lingling REN ; Yaxuan ZHU ; Weiwei JIA ; Chuan LI
Chinese Journal of Clinical Pharmacology and Therapeutics 2022;27(12):1414-1424
AlM: The Chinese medicinal herb Hanfangji is dried roots of Stephania tetrandra S. Moore (Family, Menispermaceae). Tetrandrine and fangchinoline are two major constituents of Hanfangji and these bisbenzyltetrahydroisoquinoline alkaloids possess anti - cancer and other pharmacological activities. To facilitate further pharmacodynamic investigation of these compounds, a pharmacokinetic investigation was performed in rats and in vitro. METHODS: Pharmacokinetics of tetrandrine and fangchinoline were characterized in rats p.o. or i.v. dosing an aqueous extract of Hanfangji or the individual compound. Unbound levels of systemic exposure to these two alkaloids were assessed using in vitro studies of plasma protein binding, blood-plasma partition, and lysosomal trapping. All the study samples were analyzed by liquid chromatography/mass spectrometry.RESULTS: We found two pharmacokinetic features of tetrandrine and fangchinoline. First, the two compounds had blood levels of systemic exposure substantially higher than the respective plasma levels of systemic exposure. Second, the two compounds exhibited significantly higher systemic exposure levels after p.o. dosing an aqueous extract of Hanfangji than the respective exposure levels after p.o. dosing the individual compound, at the same compound dose levels and under the same conditions for analytical measurement and the same conditions for animal study. Unbound fractions of tetrandrine and fangchinoline in rat plasma were 2%-5% and the concentrations of the alkaloids in rat erythrocytes were 5-times higher than those in rat plasma. Lysosomal inhibitor could block their trapping in lysosomes and significantly reduce their concentrations in HEK-293 cells. CONCLUSlON: The following pharmacokinetic aspects should be noted in pharmacodynamic investigation of tetrandrine and fangchinoline: extensive binding with plasma proteins, extensive binding with erythrocytes, and trapping by lysosomes of tissue cells substantially reduce the levels of unbound tetrandrine and fangchinoline in the systemic circulation.