1.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
2.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
3.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
4.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
5.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
6.Clinical characteristics and prognosis of chronic disseminated candidiasis in children with acute leukemia following chemotherapy: a multicenter clinical study.
Xin-Hong JIANG ; Pei-Jun LIU ; Chun-Ping WU ; Kai-Zhi WENG ; Shu-Quan ZHUANG ; Shu-Xian HUANG ; Xiao-Fang WANG ; Yong-Zhi ZHENG
Chinese Journal of Contemporary Pediatrics 2025;27(5):540-547
OBJECTIVES:
To investigate the clinical characteristics and prognosis of chronic disseminated candidiasis (CDC) in children with acute leukemia (AL) following chemotherapy.
METHODS:
A retrospective analysis was conducted on children diagnosed with CDC (including confirmed, clinically diagnosed, and suspected cases) after AL chemotherapy from January 2015 to December 2023 at Fujian Medical University Union Hospital, Zhangzhou Municipal Hospital, and Quanzhou First Hospital Affiliated to Fujian Medical University. Clinical characteristics and prognosis were analyzed.
RESULTS:
The incidence of CDC in children with AL following chemotherapy was 1.92% (32/1 668). Among the children with acute lymphoblastic leukemia, the incidence of CDC in the high-risk group was significantly higher than in the low-risk group (P=0.002). All patients presented with fever unresponsive to antibiotics during the neutropenic period, with 81% (26/32) involving the liver. C-reactive protein (CRP) levels were significantly elevated (≥50 mg/L) in 97% (31/32) of the patients. The efficacy of combined therapy with liposomal amphotericin B and caspofungin or posaconazole for CDC was 66% (19/29), higher than with caspofungin (9%, 2/22) or liposomal amphotericin B (18%, 2/11) monotherapy. The overall cure rate was 72% (23/32). The proportion of patients with CRP ≥50 mg/L and/or a positive β-D-glucan test for more than 2 weeks and breakthrough infections during caspofungin treatment was significantly higher in the treatment failure group compared to the successful treatment group (P<0.05).
CONCLUSIONS
CDC in children with AL after chemotherapy may be associated with prolonged neutropenia due to intensive chemotherapy. Combination antifungal regimens based on liposomal amphotericin B have a higher cure rate, while persistently high CRP levels and positive β-D-glucan tests may indicate poor prognosis.
Adolescent
;
Child
;
Child, Preschool
;
Female
;
Humans
;
Infant
;
Male
;
Antifungal Agents/therapeutic use*
;
Candidiasis/diagnosis*
;
Chronic Disease
;
Leukemia/complications*
;
Precursor Cell Lymphoblastic Leukemia-Lymphoma/complications*
;
Prognosis
;
Retrospective Studies
7.Thiotepa-containing conditioning for allogeneic hematopoietic stem cell transplantation in children with inborn errors of immunity: a retrospective clinical analysis.
Xiao-Jun WU ; Xia-Wei HAN ; Kai-Mei WANG ; Shao-Fen LIN ; Li-Ping QUE ; Xin-Yu LI ; Dian-Dian LIU ; Jian-Pei FANG ; Ke HUANG ; Hong-Gui XU
Chinese Journal of Contemporary Pediatrics 2025;27(10):1240-1246
OBJECTIVES:
To evaluate the safety and efficacy of thiotepa (TT)-containing conditioning regimens for allogeneic hematopoietic stem cell transplantation (HSCT) in children with inborn errors of immunity (IEI).
METHODS:
Clinical data of 22 children with IEI who underwent HSCT were retrospectively reviewed. Survival after HSCT was estimated using the Kaplan-Meier method.
RESULTS:
Nine patients received a traditional conditioning regimen (fludarabine + busulfan + cyclophosphamide/etoposide) and underwent peripheral blood stem cell transplantation (PBSCT). Thirteen patients received a TT-containing modified conditioning regimen (TT + fludarabine + busulfan + cyclophosphamide), including seven PBSCT and six umbilical cord blood transplantation (UCBT) cases. Successful engraftment with complete donor chimerism was achieved in all patients. Acute graft-versus-host disease occurred in 12 patients (one with grade III and the remaining with grade I-II). Chronic graft-versus-host disease occurred in one patient. The incidence of EB viremia in UCBT patients was lower than that in PBSCT patients (P<0.05). Over a median follow-up of 36.0 months, one death occurred. The 3-year overall survival (OS) rate was 100% for the modified regimen and 88.9% ± 10.5% for the traditional regimen (P=0.229). When comparing transplantation types, the 3-year OS rates were 100% for UCBT and 93.8% ± 6.1% for PBSCT (P>0.05), and the 3-year event-free survival rates were 100% and 87.1% ± 8.6%, respectively (P>0.05).
CONCLUSIONS
TT-containing conditioning for allogeneic HSCT in children with IEI is safe and effective. Both UCBT and PBSCT may achieve high success rates.
Humans
;
Retrospective Studies
;
Transplantation Conditioning/methods*
;
Thiotepa/therapeutic use*
;
Hematopoietic Stem Cell Transplantation/adverse effects*
;
Male
;
Female
;
Child, Preschool
;
Infant
;
Child
;
Transplantation, Homologous
;
Graft vs Host Disease
;
Adolescent
8.Erratum: Author correction to "Up-regulation of glyclipid transfer protein by bicyclol causes spontaneous restriction of hepatitis C virus replication" Acta Pharm Sin B 9 (2019) 769-781.
Menghao HUANG ; Hu LI ; Rong XUE ; Jianrui LI ; Lihua WANG ; Junjun CHENG ; Zhouyi WU ; Wenjing LI ; Jinhua CHEN ; Xiaoqin LV ; Qiang LI ; Pei LAN ; Limin ZHAO ; Yongfeng YANG ; Zonggen PENG ; Jiandong JIANG
Acta Pharmaceutica Sinica B 2025;15(3):1721-1721
[This corrects the article DOI: 10.1016/j.apsb.2019.01.013.].
9.Evolution-guided design of mini-protein for high-contrast in vivo imaging.
Nongyu HUANG ; Yang CAO ; Guangjun XIONG ; Suwen CHEN ; Juan CHENG ; Yifan ZHOU ; Chengxin ZHANG ; Xiaoqiong WEI ; Wenling WU ; Yawen HU ; Pei ZHOU ; Guolin LI ; Fulei ZHAO ; Fanlian ZENG ; Xiaoyan WANG ; Jiadong YU ; Chengcheng YUE ; Xinai CUI ; Kaijun CUI ; Huawei CAI ; Yuquan WEI ; Yang ZHANG ; Jiong LI
Acta Pharmaceutica Sinica B 2025;15(10):5327-5345
Traditional development of small protein scaffolds has relied on display technologies and mutation-based engineering, which limit sequence and functional diversity, thereby constraining their therapeutic and application potential. Protein design tools have significantly advanced the creation of novel protein sequences, structures, and functions. However, further improvements in design strategies are still needed to more efficiently optimize the functional performance of protein-based drugs and enhance their druggability. Here, we extended an evolution-based design protocol to create a novel minibinder, BindHer, against the human epidermal growth factor receptor 2 (HER2). It not only exhibits super stability and binding selectivity but also demonstrates remarkable properties in tissue specificity. Radiolabeling experiments with 99mTc, 68Ga, and 18F revealed that BindHer efficiently targets tumors in HER2-positive breast cancer mouse models, with minimal nonspecific liver absorption, outperforming scaffolds designed through traditional engineering. These findings highlight a new rational approach to automated protein design, offering significant potential for large-scale applications in therapeutic mini-protein development.
10.Expression of severe fever with thrombocytopenia syndrome virus Gn-D Ⅲ-Ⅲ and development of indirect ELISA for antibody detection
Mengyao ZHANG ; Tianlai LIANG ; Feihu YAN ; Tao CHEN ; Cuicui JIAO ; Hongli JIN ; Jiaoyan LUAN ; Xiao WU ; Pei HUANG ; Haili ZHANG ; Qin NING ; Hualei WANG ; Yuanyuan LI
Chinese Journal of Veterinary Science 2024;44(8):1704-1712
The PCR-amplified severe fever with thrombocytopenia syndrome virus(SFTSV)Gn-DⅢ-Ⅲ gene was inserted into the pET-30a(+)prokaryotic expression vector to generate the re-combinant plasmid pET-SFTSV-Gn-D Ⅲ-Ⅲ.The plasmid was transformed into E.coli BL21(DE3)for Gn-DⅢ-m protein expression and the expression conditions were optimized.The Gn-DⅢ-Ⅲ protein purified with Ni-NTA column affinity chromatography was applied as the captured antigen to establish an indirect ELISA method for the detection of SFTSV antibody.The results demonstrated that the recombinant plasmid pET-SFTSV-Gn-D Ⅲ-Ⅲ was successfully constructed as identified by PCR and sequencing.The recombinant protein SFTSV Gn-D m-Ⅲ was soluble ex-pression in E.coli under the optimal induction conditions of 0.4 mmol/L IPTG at 25 ℃ for 4 h,and the protein purity was 91.77%after purification by Ni-NTA column.The optimal reaction con-ditions for the indirect ELISA of SFTSV antibody were as follows:coating antigen concentration(5 μg/mL),primary antibody(incubation at 37 ℃ for 1.5 h),and secondary antibody(diluted 1:10 000 and incubated at 37 ℃ for 1 h).The established method had no cross-reactivity with Rift Valley fever virus(RVFV),Ebola virus(EBOV),and tick-borne encephalitis virus(TBEV)posi-tive sera.The method had a high sensitivity,with P/N>2.1 for SFTSV-positive sera diluted to 81920.Coefficients of variation for intra-and inter-batch reactions were less than 10%.Detection of four SFTSV-infected human clinical serum samples showed the serum samples from patients in re-mission were tested as positive(P/N>2.1),while serum samples from patients with multiple or-gan failure were detected as negative(P/N<2.1).The results indicated that the SFTSV Gn-D Ⅲ-Ⅲ protein was successfully expressed and purified,and it was used as the coating protein to estab-lish an indirect ELISA assay for SFTSV antibody,which possesses good specificity,sensitivity and reproducibility.This method might be applied to detect human SFTSV clinical serum samples.

Result Analysis
Print
Save
E-mail