1.Ras Guanine Nucleotide-Releasing Protein-4 Inhibits Erythropoietin Production in Diabetic Mice with Kidney Disease by Degrading HIF2A
Junmei WANG ; Shuai HUANG ; Li ZHANG ; Yixian HE ; Xian SHAO ; A-Shan-Jiang A-NI-WAN ; Yan KONG ; Xuying MENG ; Pei YU ; Saijun ZHOU
Diabetes & Metabolism Journal 2025;49(3):421-435
Background:
In acute and chronic renal inflammatory diseases, the activation of inflammatory cells is involved in the defect of erythropoietin (EPO) production. Ras guanine nucleotide-releasing protein-4 (RasGRP4) promotes renal inflammatory injury in type 2 diabetes mellitus (T2DM). Our study aimed to investigate the role and mechanism of RasGRP4 in the production of renal EPO in diabetes.
Methods:
The degree of tissue injury was observed by pathological staining. Inflammatory cell infiltration was analyzed by immunohistochemical staining. Serum EPO levels were detected by enzyme-linked immunosorbent assay, and EPO production and renal interstitial fibrosis were analyzed by immunofluorescence. Quantitative real-time polymerase chain reaction and Western blotting were used to detect the expression of key inflammatory factors and the activation of signaling pathways. In vitro, the interaction between peripheral blood mononuclear cells (PBMCs) and C3H10T1/2 cells was investigated via cell coculture experiments.
Results:
RasGRP4 decreased the expression of hypoxia-inducible factor 2-alpha (HIF2A) via the ubiquitination–proteasome degradation pathway and promoted myofibroblastic transformation by activating critical inflammatory pathways, consequently reducing the production of EPO in T2DM mice.
Conclusion
RasGRP4 participates in the production of renal EPO in diabetic mice by affecting the secretion of proinflammatory cytokines in PBMCs, degrading HIF2A, and promoting the myofibroblastic transformation of C3H10T1/2 cells.
2.Ras Guanine Nucleotide-Releasing Protein-4 Inhibits Erythropoietin Production in Diabetic Mice with Kidney Disease by Degrading HIF2A
Junmei WANG ; Shuai HUANG ; Li ZHANG ; Yixian HE ; Xian SHAO ; A-Shan-Jiang A-NI-WAN ; Yan KONG ; Xuying MENG ; Pei YU ; Saijun ZHOU
Diabetes & Metabolism Journal 2025;49(3):421-435
Background:
In acute and chronic renal inflammatory diseases, the activation of inflammatory cells is involved in the defect of erythropoietin (EPO) production. Ras guanine nucleotide-releasing protein-4 (RasGRP4) promotes renal inflammatory injury in type 2 diabetes mellitus (T2DM). Our study aimed to investigate the role and mechanism of RasGRP4 in the production of renal EPO in diabetes.
Methods:
The degree of tissue injury was observed by pathological staining. Inflammatory cell infiltration was analyzed by immunohistochemical staining. Serum EPO levels were detected by enzyme-linked immunosorbent assay, and EPO production and renal interstitial fibrosis were analyzed by immunofluorescence. Quantitative real-time polymerase chain reaction and Western blotting were used to detect the expression of key inflammatory factors and the activation of signaling pathways. In vitro, the interaction between peripheral blood mononuclear cells (PBMCs) and C3H10T1/2 cells was investigated via cell coculture experiments.
Results:
RasGRP4 decreased the expression of hypoxia-inducible factor 2-alpha (HIF2A) via the ubiquitination–proteasome degradation pathway and promoted myofibroblastic transformation by activating critical inflammatory pathways, consequently reducing the production of EPO in T2DM mice.
Conclusion
RasGRP4 participates in the production of renal EPO in diabetic mice by affecting the secretion of proinflammatory cytokines in PBMCs, degrading HIF2A, and promoting the myofibroblastic transformation of C3H10T1/2 cells.
3.Ras Guanine Nucleotide-Releasing Protein-4 Inhibits Erythropoietin Production in Diabetic Mice with Kidney Disease by Degrading HIF2A
Junmei WANG ; Shuai HUANG ; Li ZHANG ; Yixian HE ; Xian SHAO ; A-Shan-Jiang A-NI-WAN ; Yan KONG ; Xuying MENG ; Pei YU ; Saijun ZHOU
Diabetes & Metabolism Journal 2025;49(3):421-435
Background:
In acute and chronic renal inflammatory diseases, the activation of inflammatory cells is involved in the defect of erythropoietin (EPO) production. Ras guanine nucleotide-releasing protein-4 (RasGRP4) promotes renal inflammatory injury in type 2 diabetes mellitus (T2DM). Our study aimed to investigate the role and mechanism of RasGRP4 in the production of renal EPO in diabetes.
Methods:
The degree of tissue injury was observed by pathological staining. Inflammatory cell infiltration was analyzed by immunohistochemical staining. Serum EPO levels were detected by enzyme-linked immunosorbent assay, and EPO production and renal interstitial fibrosis were analyzed by immunofluorescence. Quantitative real-time polymerase chain reaction and Western blotting were used to detect the expression of key inflammatory factors and the activation of signaling pathways. In vitro, the interaction between peripheral blood mononuclear cells (PBMCs) and C3H10T1/2 cells was investigated via cell coculture experiments.
Results:
RasGRP4 decreased the expression of hypoxia-inducible factor 2-alpha (HIF2A) via the ubiquitination–proteasome degradation pathway and promoted myofibroblastic transformation by activating critical inflammatory pathways, consequently reducing the production of EPO in T2DM mice.
Conclusion
RasGRP4 participates in the production of renal EPO in diabetic mice by affecting the secretion of proinflammatory cytokines in PBMCs, degrading HIF2A, and promoting the myofibroblastic transformation of C3H10T1/2 cells.
4.Ras Guanine Nucleotide-Releasing Protein-4 Inhibits Erythropoietin Production in Diabetic Mice with Kidney Disease by Degrading HIF2A
Junmei WANG ; Shuai HUANG ; Li ZHANG ; Yixian HE ; Xian SHAO ; A-Shan-Jiang A-NI-WAN ; Yan KONG ; Xuying MENG ; Pei YU ; Saijun ZHOU
Diabetes & Metabolism Journal 2025;49(3):421-435
Background:
In acute and chronic renal inflammatory diseases, the activation of inflammatory cells is involved in the defect of erythropoietin (EPO) production. Ras guanine nucleotide-releasing protein-4 (RasGRP4) promotes renal inflammatory injury in type 2 diabetes mellitus (T2DM). Our study aimed to investigate the role and mechanism of RasGRP4 in the production of renal EPO in diabetes.
Methods:
The degree of tissue injury was observed by pathological staining. Inflammatory cell infiltration was analyzed by immunohistochemical staining. Serum EPO levels were detected by enzyme-linked immunosorbent assay, and EPO production and renal interstitial fibrosis were analyzed by immunofluorescence. Quantitative real-time polymerase chain reaction and Western blotting were used to detect the expression of key inflammatory factors and the activation of signaling pathways. In vitro, the interaction between peripheral blood mononuclear cells (PBMCs) and C3H10T1/2 cells was investigated via cell coculture experiments.
Results:
RasGRP4 decreased the expression of hypoxia-inducible factor 2-alpha (HIF2A) via the ubiquitination–proteasome degradation pathway and promoted myofibroblastic transformation by activating critical inflammatory pathways, consequently reducing the production of EPO in T2DM mice.
Conclusion
RasGRP4 participates in the production of renal EPO in diabetic mice by affecting the secretion of proinflammatory cytokines in PBMCs, degrading HIF2A, and promoting the myofibroblastic transformation of C3H10T1/2 cells.
5.Unveiling the metabolic fate of drugs through metabolic reaction-based molecular networking.
Haodong ZHU ; Xupeng TONG ; Qi WANG ; Aijing LI ; Zubao WU ; Qiqi WANG ; Pei LIN ; Xinsheng YAO ; Liufang HU ; Liangliang HE ; Zhihong YAO
Acta Pharmaceutica Sinica B 2025;15(6):3210-3225
Effective annotation of in vivo drug metabolites using liquid chromatography-mass spectrometry (LC-MS) remains a formidable challenge. Herein, a metabolic reaction-based molecular networking (MRMN) strategy is introduced, which enables the "one-pot" discovery of prototype drugs and their metabolites. MRMN constructs networks by matching metabolic reactions and evaluating MS2 spectral similarity, incorporating innovations and improvements in feature degradation of MS2 spectra, exclusion of endogenous interference, and recognition of redundant nodes. A minimum 75% correlation between structural similarity and MS2 similarity of neighboring metabolites was ensured, mitigating false negatives due to spectral feature degradation. At least 79% of nodes, 49% of edges, and 97% of subnetworks were reduced by an exclusion strategy of endogenous ions compared to the Global Natural Products Social Molecular Networking (GNPS) platform. Furthermore, an approach of redundant ions identification was refined, achieving a 10%-40% recognition rate across different samples. The effectiveness of MRMN was validated through a single compound, plant extract, and mixtures of multiple plant extracts. Notably, MRMN is freely accessible online at https://yaolab.network, broadening its applications.
6.A Prognostic Model Based on Colony Stimulating Factors-related Genes in Triple-negative Breast Cancer
Yu-Xuan GUO ; Zhi-Yu WANG ; Pei-Yao XIAO ; Chan-Juan ZHENG ; Shu-Jun FU ; Guang-Chun HE ; Jun LONG ; Jie WANG ; Xi-Yun DENG ; Yi-An WANG
Progress in Biochemistry and Biophysics 2024;51(10):2741-2756
ObjectiveTriple-negative breast cancer (TNBC) is the breast cancer subtype with the worst prognosis, and lacks effective therapeutic targets. Colony stimulating factors (CSFs) are cytokines that can regulate the production of blood cells and stimulate the growth and development of immune cells, playing an important role in the malignant progression of TNBC. This article aims to construct a novel prognostic model based on the expression of colony stimulating factors-related genes (CRGs), and analyze the sensitivity of TNBC patients to immunotherapy and drug therapy. MethodsWe downloaded CRGs from public databases and screened for differentially expressed CRGs between normal and TNBC tissues in the TCGA-BRCA database. Through LASSO Cox regression analysis, we constructed a prognostic model and stratified TNBC patients into high-risk and low-risk groups based on the colony stimulating factors-related genes risk score (CRRS). We further analyzed the correlation between CRRS and patient prognosis, clinical features, tumor microenvironment (TME) in both high-risk and low-risk groups, and evaluated the relationship between CRRS and sensitivity to immunotherapy and drug therapy. ResultsWe identified 842 differentially expressed CRGs in breast cancer tissues of TNBC patients and selected 13 CRGs for constructing the prognostic model. Kaplan-Meier survival curves, time-dependent receiver operating characteristic curves, and other analyses confirmed that TNBC patients with high CRRS had shorter overall survival, and the predictive ability of CRRS prognostic model was further validated using the GEO dataset. Nomogram combining clinical features confirmed that CRRS was an independent factor for the prognosis of TNBC patients. Moreover, patients in the high-risk group had lower levels of immune infiltration in the TME and were sensitive to chemotherapeutic drugs such as 5-fluorouracil, ipatasertib, and paclitaxel. ConclusionWe have developed a CRRS-based prognostic model composed of 13 differentially expressed CRGs, which may serve as a useful tool for predicting the prognosis of TNBC patients and guiding clinical treatment. Moreover, the key genes within this model may represent potential molecular targets for future therapies of TNBC.
7.Effect of Shexiangbaoxin Pill on vascular endothelial function in patients with primary microvascular angina
Qi HUANG ; Xiangqian SUI ; Fengchun JIANG ; Wujian HE ; Dean PEI ; Shisheng WANG ; Yongbin HU
China Modern Doctor 2024;62(8):74-78
Objective The plasma von Willebrand factor(vWF)level in patients with primary microvascular angina(PMVA)were measured to evaluate the vascular endothelial function of the patients.The change of vWF level in patients after the treatment with Shexiangbaoxin Pill were observeg.Methods Totally 69 patients who were definitely diagnosed as PMVA,They were randomly divided into conventional treatment group(33cases)and ShexiangBaoxin Pill group(36cases).The plasma vWF levels of the two groups were measured before and after treatment.Results The level of vWF before treatment in conventional treatment group was(50.93±32.98)μg/L.The level of vWF before treatment in ShexiangBaoxin Pill group was(27.45±25.02)μg/L.The level of vWF in conventional treatment group after treatment was(49.65±35.12)μg/L.The level of vWF after treatment in ShexiangBaoxin Pill group was(17.37±15.68)μg/L.The difference of vWF decrease in Baoxin Pill group after treatment(10.08±16.47)μg/L,was lower than that in conventional treatment group(1.28±12.37)μg/L,the difference is significant(P<0.05).Conclusion Shexiang Baoxin Pill has the function of protecting vascular endothelium,and PMVA patients can benefit from treatment.
8.Study on Quality Evaluation of Classical Formula-Linggui Zhugan Decoction Based on UPLC Fingerprint Chromatogram Combined with Chemometric Analysis
Fangjie LIU ; Zhenjie LUAN ; Chunlian HE ; Xilin WANG ; Pei ZUO
Chinese Journal of Information on Traditional Chinese Medicine 2024;31(1):128-134
Objective To establish the UPLC fingerprint chromatogram combined with chemometric analysis for the quality evaluation of classical formula Linggui Zhugan Decoction.Methods SHIMADZU Shim-Pack GIST C18 column(100 mm×2.1 mm,2.0 μm)was used with acetonitrile-0.1%phosphoric acid aqueous solution as mobile phase,gradient elution;flow rate was 0.2 mL/min;the detection wavelength was 266 nm for the first 30 minutes and 235 nm for the last 36 minutes;the column temperature was 30℃.The UPLC fingerprint of Linggui Zhugan Decoction was established by Similarity Evaluation System for Chromatographic Fingerprint of TCM(2012.130723 version),and the common peak was determined and the similarity evaluation was carried out.Based on the peak area determination results of the common peak of the fingerprint,the quality of different batches of Linggui Zhugan Decoction was evaluated by chemometrics such as clustering analysis and principal component analysis.Results A total of 24 common peaks were confirmed and 14 components were identified by using reference substances.The similarity of 10 batches of Linggui Zhugan Decoction samples was greater than 0.950,which could be divided into two categories by chemometrics,and the principal component 1-4 were the main factors affecting its quality evaluation.OPLS-DA identified 6 differential markers.Conclusion The fingerprint research method established in the study is simple,reliable and reproducible.Through the method of fingerprint combined with chemometrics analysis,the differences between Linggui Zhugan Decoction from different origins of medicinal materials are identified,which provides a reference for the internal quality evaluation of Linggui Zhugan Decoction.
9.Experts consensus on standard items of the cohort construction and quality control of temporomandibular joint diseases (2024)
Min HU ; Chi YANG ; Huawei LIU ; Haixia LU ; Chen YAO ; Qiufei XIE ; Yongjin CHEN ; Kaiyuan FU ; Bing FANG ; Songsong ZHU ; Qing ZHOU ; Zhiye CHEN ; Yaomin ZHU ; Qingbin ZHANG ; Ying YAN ; Xing LONG ; Zhiyong LI ; Yehua GAN ; Shibin YU ; Yuxing BAI ; Yi ZHANG ; Yanyi WANG ; Jie LEI ; Yong CHENG ; Changkui LIU ; Ye CAO ; Dongmei HE ; Ning WEN ; Shanyong ZHANG ; Minjie CHEN ; Guoliang JIAO ; Xinhua LIU ; Hua JIANG ; Yang HE ; Pei SHEN ; Haitao HUANG ; Yongfeng LI ; Jisi ZHENG ; Jing GUO ; Lisheng ZHAO ; Laiqing XU
Chinese Journal of Stomatology 2024;59(10):977-987
Temporomandibular joint (TMJ) diseases are common clinical conditions. The number of patients with TMJ diseases is large, and the etiology, epidemiology, disease spectrum, and treatment of the disease remain controversial and unknown. To understand and master the current situation of the occurrence, development and prevention of TMJ diseases, as well as to identify the patterns in etiology, incidence, drug sensitivity, and prognosis is crucial for alleviating patients′suffering.This will facilitate in-depth medical research, effective disease prevention measures, and the formulation of corresponding health policies. Cohort construction and research has an irreplaceable role in precise disease prevention and significant improvement in diagnosis and treatment levels. Large-scale cohort studies are needed to explore the relationship between potential risk factors and outcomes of TMJ diseases, and to observe disease prognoses through long-term follw-ups. The consensus aims to establish a standard conceptual frame work for a cohort study on patients with TMJ disease while providing ideas for cohort data standards to this condition. TMJ disease cohort data consists of both common data standards applicable to all specific disease cohorts as well as disease-specific data standards. Common data were available for each specific disease cohort. By integrating different cohort research resources, standard problems or study variables can be unified. Long-term follow-up can be performed using consistent definitions and criteria across different projects for better core data collection. It is hoped that this consensus will be facilitate the development cohort studies of TMJ diseases.
10.The significance of hypermethylation level of CDO1 gene and HOXA9 gene in serum in the diagnosis of ovarian cancer
Qiannan HOU ; Yu YUAN ; Yan LI ; Zhaolin GONG ; Qiang ZHANG ; Dan FENG ; Yuanfu GONG ; Linhai WANG ; Pei LIU ; Xiaobing XIE ; Li HE
Chinese Journal of Laboratory Medicine 2024;47(4):401-406
Objective:To explore the clinical application and triage management value of using blood circulating cell-free DNA (cfDNA) (cysteine dioxygenase type 1 gene, CDO1, and Homeobox protein A9 gene, HOXA9) hypermethylation level to detect and diagnose ovarian cancer.Methods:A case-control study was conducted on patients who went for surgery at Chengdu Womens and Childrens Central Hospital from November 2022 to October 2023. Blood samples were collected before surgery for evaluation of cancer antigen 125 (CA125), human epididymis protein 4 (HE4), risk of ovarian malignancy algorithm (ROMA) score, and DNA methylation testing. The basic clinical information, biomarkers, and transvaginal ultrasound (TVS) information were collected simultaneously. Information from a total of 151 patients was collected, including 122 cases with benign pathology and 29 ovarian cancer cases. The pathologic diagnosis of ovarian tissue was defined as the gold standard. The multivariate logistic regression analysis was used to identify high-risk factors for ovarian cancer. The clinical efficacy of DNA methylation detection for ovarian cancer was analyzed using the area under curve (AUC).Results:The results showed that the age, menopausal status, CA125 and HE4 detection, ROMA score, positivity rate of CDO1 gene and HOXA9 gene single or combined testing in ovarian cancer patients were higher than those in the benign group and showed significant differences ( P<0.05). Among these detection protocols, the AUC of CDO1 and HOXA9 dual gene methylation testing for ovarian cancer was the highest at 0.936 (95% CI, 0.878-0.994), with 89.7% (95% CI 73.6%-96.4%) sensitivity and 97.5% (95% CI 93.0%-99.2%) specificity, respectively. The positive detection rate of CDO1 and HOXA9 dual gene methylation in early ovarian cancer FOGO I-II stage is 12/14 higher than other tests. Conclusion:Blood cfDNA methylation detection, a simple, non-invasive, and highly sensitive detection method, is superior to the current ovarian cancer testing in the risk assessment and early detection.

Result Analysis
Print
Save
E-mail