1.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
2.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
3.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
4.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
5.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
6.Optimization of extraction process for Shenxiong Huanglian Jiedu Granules based on AHP-CRITIC hybrid weighting method, grey correlation analysis, and BP-ANN.
Zi-An LI ; De-Wen LIU ; Xin-Jian LI ; Bing-Yu WU ; Qun LAN ; Meng-Jia GUO ; Jia-Hui SUN ; Nan-Yang LIU ; Hui PEI ; Hao LI ; Hong YI ; Jin-Yu WANG ; Liang-Mian CHEN
China Journal of Chinese Materia Medica 2025;50(10):2674-2683
By employing the analytic hierarchy process(AHP), the CRITIC method(a weight determination method based on indicator correlations), and the AHP-CRITIC hybrid weighting method, the weight coefficients of evaluation indicators were determined, followed by a comprehensive score comparison. The grey correlation analysis was then performed to analyze the results calculated using the hybrid weighting method. Subsequently, a backpropagation-artificial neural network(BP-ANN) model was constructed to predict the extraction process parameters and optimize the extraction process for Shenxiong Huanglian Jiedu Granules(SHJG). In the extraction process, an L_9(3~4) orthogonal experiment was designed to optimize three factors at three levels, including extraction frequency, water addition amount, and extraction time. The evaluation indicators included geniposide, berberine, ginsenoside Rg_1 + Re, ginsenoside Rb_1, ferulic acid, and extract yield. Finally, the optimal extraction results obtained by the orthogonal experiment, grey correlation analysis, and BP-ANN method were compared, and validation experiments were conducted. The results showed that the optimal extraction process involved two rounds of aqueous extraction, each lasting one hour; the first extraction used ten times the amount of added water, while the second extraction used eight times the amount. In the validation experiments, the average content of each indicator component was higher than the average content obtained in the orthogonal experiment, with a higher comprehensive score. The optimized extraction process parameters were reliable and stable, making them suitable for subsequent preparation process research.
Drugs, Chinese Herbal/analysis*
;
Neural Networks, Computer
7.Hippocampal Extracellular Matrix Protein Laminin β1 Regulates Neuropathic Pain and Pain-Related Cognitive Impairment.
Ying-Chun LI ; Pei-Yang LIU ; Hai-Tao LI ; Shuai WANG ; Yun-Xin SHI ; Zhen-Zhen LI ; Wen-Guang CHU ; Xia LI ; Wan-Neng LIU ; Xing-Xing ZHENG ; Fei WANG ; Wen-Juan HAN ; Jie ZHANG ; Sheng-Xi WU ; Rou-Gang XIE ; Ceng LUO
Neuroscience Bulletin 2025;41(12):2127-2147
Patients suffering from nerve injury often experience exacerbated pain responses and complain of memory deficits. The dorsal hippocampus (dHPC), a well-defined region responsible for learning and memory, displays maladaptive plasticity upon injury, which is assumed to underlie pain hypersensitivity and cognitive deficits. However, much attention has thus far been paid to intracellular mechanisms of plasticity rather than extracellular alterations that might trigger and facilitate intracellular changes. Emerging evidence has shown that nerve injury alters the microarchitecture of the extracellular matrix (ECM) and decreases ECM rigidity in the dHPC. Despite this, it remains elusive which element of the ECM in the dHPC is affected and how it contributes to neuropathic pain and comorbid cognitive deficits. Laminin, a key element of the ECM, consists of α-, β-, and γ-chains and has been implicated in several pathophysiological processes. Here, we showed that peripheral nerve injury downregulates laminin β1 (LAMB1) in the dHPC. Silencing of hippocampal LAMB1 exacerbates pain sensitivity and induces cognitive dysfunction. Further mechanistic analysis revealed that loss of hippocampal LAMB1 causes dysregulated Src/NR2A signaling cascades via interaction with integrin β1, leading to decreased Ca2+ levels in pyramidal neurons, which in turn orchestrates structural and functional plasticity and eventually results in exaggerated pain responses and cognitive deficits. In this study, we shed new light on the functional capability of hippocampal ECM LAMB1 in the modulation of neuropathic pain and comorbid cognitive deficits, and reveal a mechanism that conveys extracellular alterations to intracellular plasticity. Moreover, we identified hippocampal LAMB1/integrin β1 signaling as a potential therapeutic target for the treatment of neuropathic pain and related memory loss.
Animals
;
Laminin/genetics*
;
Hippocampus/metabolism*
;
Neuralgia/metabolism*
;
Cognitive Dysfunction/etiology*
;
Male
;
Peripheral Nerve Injuries/metabolism*
;
Extracellular Matrix/metabolism*
;
Integrin beta1/metabolism*
;
Pyramidal Cells/metabolism*
;
Signal Transduction
8.A Health Economic Evaluation of an Artificial Intelligence-assisted Prescription Review System in a Real-world Setting in China.
Di WU ; Ying Peng QIU ; Li Wei SHI ; Ke Jun LIU ; Xue Qing TIAN ; Ping REN ; Mao YOU ; Jun Rui PEI ; Wen Qi FU ; Yue XIAO
Biomedical and Environmental Sciences 2025;38(3):385-388
9.Morning discharge time and pipeline disinfection frequency of endoscope final rinse water
Han SONG ; Yuan SHENG ; Wen LI ; Zhao-Rong WU ; Tian TIAN ; Wei CAI ; Pei CAI
Chinese Journal of Infection Control 2024;23(6):750-756
Objective To explore the optimal morning discharge time and pipeline disinfection frequency of the fi-nal rinse water from the endoscopy center according to the microbial culture results.Methods Different morning discharge timing and number of bacterial colonies in the pipeline for the final rinse water from the endoscopy center of a hospital in Jiangsu Province were monitored.Microbial detection was conducted on water samples collected from the two final rinse water sampling sites in the endoscopy room after 0,1,3,5,and 7 minutes of discharge,respec-tively(100 mL each,continuously monitored for 35 days,with 70 samples at each time point)to explore the optimal discharge timing.The optimal disinfection frequency of pipelines for purified water was explored according to the determined optimal morning discharge timing.Two samples were taken daily from 2 sampling sites after pipeline disinfection and continued for 5 weeks,resulting in 70 samples in total.Results Sampling and monitoring of the fi-nal rinse water at different morning discharge time points showed that the median numbers of bacterial colonies at 0,1,3,5,and 7 minutes were 745.00(373.00,1 452.50),150.00(96.75,235.75),44.00(38.00,48.00),12.00(5.00,18.00),and 6.00(4.00,9.00)CFU/100 mL,respectively.Except the difference between the 5 minute group and the 7 minute group(P>0.05),differences among all the other groups were statistically significant(all P<0.05).The median of the 0,1,3,and 5 minute groups was>10 CFU/100 mL,while the median of the 7 mi-nute group was<10 CFU/100 mL,within the qualified range.The discharge time was therefore determined to be 7 minutes.The average numbers of bacterial colonies from the final rinse water samples taken at different time points after pipeline disinfection(1,2,3,4,and 5 weeks after disinfection)were(4.21±0.86),(4.43±0.71),(6.00±0.56),(6.43±0.45),and(13.57±1.03)CFU/100 mL,respectively.The qualification rates of pipeline in terms of bacterial colony were 100%,100%,100%,100%,and 28.57%,respectively.The differences of average num-bers of bacterial colonies from the final rinse water samples taken at different time points after pipeline disinfection were statistically significant(P<0.001).The average number of bacterial colonies 5 weeks after pipeline disinfec-tion was different from those after 1,2,3,and 4 weeks,with statistically significant differences(all P<0.05),while no statistically significant differences among the other groups were observed(all P>0.05).The optimal disin-fection frequency for the purified water pipeline was once every 4 weeks.Conclusion The final rinse water remai-ning in the terminal of pipeline is contaminated to a certain degree.It is recommended to discharge water in the morning for 7 minutes before using it,and disinfect the purified water pipeline every 4 weeks.
10.Reasons and strategies of reoperation after oblique lateral interbody fusion
Zhong-You ZENG ; Deng-Wei HE ; Wen-Fei NI ; Ping-Quan CHEN ; Wei YU ; Yong-Xing SONG ; Hong-Fei WU ; Shi-Yang FAN ; Guo-Hao SONG ; Hai-Feng WANG ; Fei PEI
China Journal of Orthopaedics and Traumatology 2024;37(8):756-764
Objective To summarize the reasons and management strategies of reoperation after oblique lateral interbody fusion(OLIF),and put forward preventive measures.Methods From October 2015 to December 2019,23 patients who under-went reoperation after OLIF in four spine surgery centers were retrospectively analyzed.There were 9 males and 14 females with an average age of(61.89±8.80)years old ranging from 44 to 81 years old.The index diagnosis was degenerative lumbar intervertebral dics diseases in 3 cases,discogenie low back pain in 1 case,degenerative lumbar spondylolisthesis in 6 cases,lumbar spinal stenosis in 9 cases and degenerative lumbar spinal kyphoscoliosis in 4 cases.Sixteen patients were primarily treated with Stand-alone OLIF procedures and 7 cases were primarily treated with OLIF combined with posterior pedicle screw fixation.There were 17 cases of single fusion segment,2 of 2 fusion segments,4 of 3 fusion segments.All the cases underwent reoperation within 3 months after the initial surgery.The strategies of reoperation included supplementary posterior pedicle screw instrumentation in 16 cases;posterior laminectomy,cage adjustment and neurolysis in 2 cases,arthroplasty and neuroly-sis under endoscope in 1 case,posterior laminectomy and neurolysis in 1 case,pedicle screw adjustment in 1 case,exploration and decompression under percutaneous endoscopic in 1 case,interbody fusion cage and pedicle screw revision in 1 case.Visu-al analogue scale(VAS)and Oswestry disability index(ODI)index were used to evaluate and compare the recovery of low back pain and lumbar function before reoperation and at the last follow-up.During the follow-up process,the phenomenon of fusion cage settlement or re-displacement,as well as the condition of intervertebral fusion,were observed.The changes in in-tervertebral space height before the first operation,after the first operation,before the second operation,3 to 5 days after the second operation,6 months after the second operation,and at the latest follow-up were measured and compared.Results There was no skin necrosis and infection.All patients were followed up from 12 to 48 months with an average of(28.1±7.3)months.Nerve root injury symptoms were relieved within 3 to 6 months.No cage transverse shifting and no dislodgement,loosening or breakage of the instrumentation was observed in any patient during the follow-up period.Though the intervertebral disc height was obviously increased at the first postoperative,there was a rapid loss in the early stage,and still partially lost after reopera-tion.The VAS for back pain recovered from(6.20±1.69)points preoperatively to(1.60±0.71)points postoperatively(P<0.05).The ODI recovered from(40.60±7.01)%preoperatively to(9.14±2.66)%postoperatively(P<0.05).Conclusion There is a risk of reoperation due to failure after OLIF surgery.The reasons for reoperation include preoperative bone loss or osteoporosis the initial surgery was performed by Stand-alone,intraoperative endplate injury,significant subsidence of the fusion cage after surgery,postoperative fusion cage displacement,nerve damage,etc.As long as it is discovered in a timely manner and handled properly,further surgery after OLIF surgery can achieve better clinical results,but prevention still needs to be strengthened.

Result Analysis
Print
Save
E-mail