1.Current Trends in Artificial Intelligence-Assisted Spine Surgery: A Systematic Review
Wongthawat LIAWRUNGRUEANG ; Sung Tan CHO ; Peem SARASOMBATH ; Inhee KIM ; Jin Hwan KIM
Asian Spine Journal 2024;18(1):146-157
This systematic review summarizes existing evidence and outlines the benefits of artificial intelligence-assisted spine surgery. The popularity of artificial intelligence has grown significantly, demonstrating its benefits in computer-assisted surgery and advancements in spinal treatment. This study adhered to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses), a set of reporting guidelines specifically designed for systematic reviews and meta-analyses. The search strategy used Medical Subject Headings (MeSH) terms, including “MeSH (Artificial intelligence),” “Spine” AND “Spinal” filters, in the last 10 years, and English— from January 1, 2013, to October 31, 2023. In total, 442 articles fulfilled the first screening criteria. A detailed analysis of those articles identified 220 that matched the criteria, of which 11 were considered appropriate for this analysis after applying the complete inclusion and exclusion criteria. In total, 11 studies met the eligibility criteria. Analysis of these studies revealed the types of artificial intelligence-assisted spine surgery. No evidence suggests the superiority of assisted spine surgery with or without artificial intelligence in terms of outcomes. In terms of feasibility, accuracy, safety, and facilitating lower patient radiation exposure compared with standard fluoroscopic guidance, artificial intelligence-assisted spine surgery produced satisfactory and superior outcomes. The incorporation of artificial intelligence with augmented and virtual reality appears promising, with the potential to enhance surgeon proficiency and overall surgical safety.
2.Artificial neural networks for the detection of odontoid fractures using the Konstanz Information Miner Analytics Platform
Wongthawat LIAWRUNGRUEANG ; Sung Tan CHO ; Vit KOTHEERANURAK ; Alvin PUN ; Khanathip JITPAKDEE ; Peem SARASOMBATH
Asian Spine Journal 2024;18(3):407-414
Methods:
This study analyzed 432 open-mouth (odontoid) radiographic views of cervical spine X-ray images obtained from dataset repositories, which were used in developing ANN models based on the convolutional neural network theory. All the images contained diagnostic information, including 216 radiographic images of individuals with normal odontoid processes and 216 images of patients with acute odontoid fractures. The model classified each image as either showing an odontoid fracture or not. Specifically, 70% of the images were training datasets used for model training, and 30% were used for testing. KNIME’s graphic user interface-based programming enabled class label annotation, data preprocessing, model training, and performance evaluation.
Results:
The graphic user interface program by KNIME was used to report all radiographic X-ray imaging features. The ANN model performed 50 epochs of training. The performance indices in detecting odontoid fractures included sensitivity, specificity, F-measure, and prediction error of 100%, 95.4%, 97.77%, and 2.3%, respectively. The model’s accuracy accounted for 97% of the area under the receiver operating characteristic curve for the diagnosis of odontoid fractures.
Conclusions
The ANN models with the KNIME Analytics Platform were successfully used in the computer-assisted diagnosis of odontoid fractures using radiographic X-ray images. This approach can help radiologists in the screening, detection, and diagnosis of acute odontoid fractures.