1.Cervical Vagal Nerve Stimulation Activates the Stellate Ganglion in Ambulatory Dogs.
Kyoung Suk RHEE ; Chia Hsiang HSUEH ; Jessica A HELLYER ; Hyung Wook PARK ; Young Soo LEE ; Jason GARLIE ; Patrick ONKKA ; Anisiia T DOYTCHINOVA ; John B GARNER ; Jheel PATEL ; Lan S CHEN ; Michael C FISHBEIN ; Thomas EVERETT ; Shien Fong LIN ; Peng Sheng CHEN
Korean Circulation Journal 2015;45(2):149-157
BACKGROUND AND OBJECTIVES: Recent studies showed that, in addition to parasympathetic nerves, cervical vagal nerves contained significant sympathetic nerves. We hypothesized that cervical vagal nerve stimulation (VNS) may capture the sympathetic nerves within the vagal nerve and activate the stellate ganglion. MATERIALS AND METHODS: We recorded left stellate ganglion nerve activity (SGNA), left thoracic vagal nerve activity (VNA), and subcutaneous electrocardiogram in seven dogs during left cervical VNS with 30 seconds on-time and 30 seconds off time. We then compared the SGNA between VNS on and off times. RESULTS: Cervical VNS at moderate (0.75 mA) output induced large SGNA, elevated heart rate (HR), and reduced HR variability, suggesting sympathetic activation. Further increase of the VNS output to >1.5 mA increased SGNA but did not significantly increase the HR, suggesting simultaneous sympathetic and parasympathetic activation. The differences of integrated SGNA and integrated VNA between VNS on and off times (DeltaSGNA) increased progressively from 5.2 mV-s {95% confidence interval (CI): 1.25-9.06, p=0.018, n=7} at 1.0 mA to 13.7 mV-s (CI: 5.97-21.43, p=0.005, n=7) at 1.5 mA. The difference in HR (DeltaHR, bpm) between on and off times was 5.8 bpm (CI: 0.28-11.29, p=0.042, n=7) at 1.0 mA and 5.3 bpm (CI 1.92 to 12.61, p=0.122, n=7) at 1.5 mA. CONCLUSION: Intermittent cervical VNS may selectively capture the sympathetic components of the vagal nerve and excite the stellate ganglion at moderate output. Increasing the output may result in simultaneously sympathetic and parasympathetic capture.
Animals
;
Autonomic Nervous System
;
Dogs*
;
Electrocardiography
;
Heart Rate
;
Stellate Ganglion*
;
Vagus Nerve Stimulation*