1.PM2.5-induced M2 Polarization and IL-1α Secretion by Tumor-associated Macrophages Promotes Lung Adenocarcinoma Progression.
Bomiao QING ; Xiaolan LI ; Qin RAN ; Guoping LI
Chinese Journal of Lung Cancer 2025;28(9):667-679
BACKGROUND:
Lung adenocarcinoma (LUAD) remains one of the leading causes of cancer morbidity and mortality worldwide, and its initiation and progression are closely associated with the tumor immune microenvironment. Increasing evidence suggests that environmental exposure is a critical factor influencing lung cancer development. Among these factors, fine particulate matter (PM2.5), a major component of air pollution, has been strongly linked to elevated lung cancer risk and unfavorable prognosis. However, the underlying immunoregulatory mechanisms by which PM2.5 drives LUAD progression remain poorly understood. Tumor-associated macrophages (TAMs), especially those polarized toward the M2 phenotype, are key components of the tumor microenvironment and play crucial roles in tumor growth, angiogenesis, and immune evasion. This study aims to investigate the effects of PM2.5 exposure on TAMs and to identify the key pro-tumorigenic factors mediating this process.
METHODS:
A mouse orthotopic lung cancer model under PM2.5 exposure was established to assess lung tumor growth and macrophage phenotypic alterations using in vivo imaging and flow cytometry. A subcutaneous tumor model involving co-inoculated macrophages and tumor cells was used to further verify the effects of PM2.5 on the function of TAMs and tumor malignancy. Combining in vitro experiments, flow cytometry, Western blot, reverse transcription quantitative polymerase chain reaction (RT-qPCR), cell counting kit-8 (CCK-8) assay, colony formation assay, and wound healing assay were employed to evaluate the regulatory effects of PM2.5 on the polarization of bone marrow-derived macrophages (BMDMs) as well as tumor cell proliferation, migration, and colony-forming ability. Transcriptome sequencing integrated with TISIDB (Tumor-immune System Interactions Database) and GEPIA (Gene Expression Profiling Interactive Analysis) databases was performed to identify key cytokines for further functional validation.
RESULTS:
In the mouse orthotopic lung cancer model, PM2.5 exposure significantly promoted tumor growth and increased the proportion of M2-type TAMs (P<0.05). Subcutaneous co-inoculation with PM2.5-treated BMDMs markedly enhanced tumor proliferation and elevated the intratumoral M2-type TAMs. PM2.5-pretreated BMDMs exhibited an immunosuppressive programmed cell death ligand 1 (PD-L1)+/arginase 1 (Arg1)+ phenotype, and their conditioned media significantly promoted proliferation, migration, and colony formation of Lewis lung carcinoma cells (LLC) and B16 melanoma cells (B16) (P<0.05). Transcriptome analysis revealed that PM2.5 substantially altered macrophage gene expression, with IL-1α identified as a key upregulated secreted cytokine enriched in immunosuppressive related signaling pathways. Clinical database analyses further indicated that IL-1α expression was positively correlated with macrophage and regulatory T cells (Treg) infiltration in the LUAD immune microenvironment, and that high IL-1α expression was associated with worse overall survival in LUAD patients (HR=1.5, P=0.0053). Western blot, RT-qPCR, and immunofluorescence confirmed that PM2.5 exposure significantly upregulated IL-1α expression and secretion in TAMs.
CONCLUSIONS
PM2.5 exposure facilitates LUAD progression by inducing an immunosuppressive phenotype in macrophages and enhancing the malignant behaviors of tumor cells. Mechanistically, IL-1α may serve as a key pro-tumorigenic cytokine secreted by macrophages under PM2.5 exposure. This study provides new insights into the pathogenesis of PM2.5-associated LUAD and suggests that IL-1α could serve as a potential therapeutic target.
Animals
;
Mice
;
Tumor-Associated Macrophages/immunology*
;
Particulate Matter/toxicity*
;
Adenocarcinoma of Lung/metabolism*
;
Lung Neoplasms/genetics*
;
Humans
;
Disease Progression
;
Tumor Microenvironment/drug effects*
;
Cell Proliferation/drug effects*
;
Cell Line, Tumor
2.Association between short-term exposure to meteorological factors on hospital admissions for hemorrhagic stroke: an individual-level, case-crossover study in Ganzhou, China.
Kailun PAN ; Fen LIN ; Kai HUANG ; Songbing ZENG ; Mingwei GUO ; Jie CAO ; Haifa DONG ; Jianing WEI ; Qiujiang XI
Environmental Health and Preventive Medicine 2025;30():12-12
BACKGROUND:
Hemorrhagic stroke (HS) is associated with significant disability and mortality. However, the relationship between meteorological factors and hemorrhagic stroke, as well as the potential moderating role of these factors, remains unclear.
METHODS:
Daily data on HS, air pollution, and meteorological conditions were collected from January 2015 to December 2021 in Ganzhou to analyze the relationship between meteorological factors and HS admissions. This analysis employed a time-stratified case-crossover design in conjunction with a distributional lag nonlinear model. Additionally, a bivariate response surface modelling was utilized to further investigate the interaction between meteorological factors and particulate matter. The study also stratified the analyses by gender and age. To investigate the potential impact of extreme weather conditions on HS, this study defined the 97.5th percentile as representing extremely high weather conditions, while the 2.5th percentile was classified as extremely low.
RESULTS:
In single-day lags, the risk of admissions for HS was significantly associated with extremely low temperature (lag 1-2 and lag 13-14), extremely low humidity (lag 1 and lag 9-12), and extremely high precipitation (lag 2-7). Females exhibited greater susceptibility to extremely low temperature than males within the single-day lag pattern in the subcomponent layer, with a maximum relative risk (RR) that was 7% higher. In the cumulative lag analysis, the risk of HS admissions was significantly associated with extremely high temperature (lag 0-8∼lag 0-14), extremely low humidity (lag 0-2∼lag 0-14), and extremely high precipitation (lag 0-4∼lag 0-14). Within the cumulative lag day structure of the subcomponent layer, both extremely low and extremely high temperature had a more pronounced effect on females and aged ≥65 years. The risk of HS admissions was positively associated with extremely high barometric pressure in the female subgroups (lag 0-1 and lag 0-2). The highest number of HS admissions occurred when high PM2.5 concentrations coexisted with low precipitation.
CONCLUSIONS
Meteorological factors were significantly associated with the risk of hospital admissions for HS. Individuals who were female and aged ≥65 years were found to be more susceptible to these meteorological influences. Additionally, an interaction was observed between airborne particulate matter and meteorological factors. These findings contributed new evidence to the association between meteorological factors and HS.
China/epidemiology*
;
Humans
;
Female
;
Male
;
Aged
;
Middle Aged
;
Cross-Over Studies
;
Hospitalization/statistics & numerical data*
;
Adult
;
Hemorrhagic Stroke/etiology*
;
Meteorological Concepts
;
Weather
;
Particulate Matter/analysis*
;
Air Pollution/adverse effects*
;
Environmental Exposure/adverse effects*
;
Aged, 80 and over
;
Young Adult
3.Impacts of short-term exposure to ambient air pollutants on outpatient visits for respiratory diseases in children: a time series study in Yichang, China.
Lu CHEN ; Zhongcheng YANG ; Yingdong CHEN ; Wenhan WANG ; Chen SHAO ; Lanfang CHEN ; Xiaoyan MING ; Qiuju ZHANG
Environmental Health and Preventive Medicine 2025;30():16-16
BACKGROUND:
There is growing evidence that the occurrence and severity of respiratory diseases in children are related to the concentration of air pollutants. Nonetheless, evidence regarding the association between short-term exposure to air pollution and outpatient visits for respiratory diseases in children remains limited. Outpatients cover a wide range of disease severity, including both severe and mild cases, some of which may need to be transferred to inpatient treatment. This study aimed to quantitatively evaluate the impact of short-term ambient air pollution exposure on outpatient visits for respiratory conditions in children.
METHODS:
This study employed data of the Second People's Hospital of Yichang from January 1, 2016 to December 31, 2023, to conduct a time series analysis. The DLNM approach was integrated with a generalized additive model to examine the daily outpatient visits of pediatric patients with respiratory illnesses in hospital, alongside air pollution data obtained from monitoring stations. Adjustments were made for long-term trends, meteorological variables, and other influencing factors.
RESULTS:
A nonlinear association was identified between PM2.5, PM10, O3, NO2, SO2, CO levels and the daily outpatient visits for respiratory diseases among children. All six pollutants exhibit a hysteresis impact, with varying durations ranging from 4 to 6 days. The risks associated with air pollutants differ across various categories of children's respiratory diseases; notably, O3 and CO do not show statistical significance concerning the risk of chronic respiratory conditions. Furthermore, the results of infectious respiratory diseases were similar with those of respiratory diseases.
CONCLUSIONS
Our results indicated that short-term exposure to air pollutants may contribute to an increased incidence of outpatient visits for respiratory illnesses among children, and controlling air pollution is important to protect children's health.
Humans
;
China/epidemiology*
;
Air Pollutants/analysis*
;
Respiratory Tract Diseases/chemically induced*
;
Child
;
Child, Preschool
;
Environmental Exposure/adverse effects*
;
Air Pollution/analysis*
;
Infant
;
Male
;
Particulate Matter/adverse effects*
;
Female
;
Ambulatory Care/statistics & numerical data*
;
Outpatients/statistics & numerical data*
;
Adolescent
;
Infant, Newborn
4.Plasma club cell secretory protein reflects early lung injury: comprehensive epidemiological evidence.
Jiajun WEI ; Jinyu WU ; Hongyue KONG ; Liuquan JIANG ; Yong WANG ; Ying GUO ; Quan FENG ; Jisheng NIE ; Yiwei SHI ; Xinri ZHANG ; Xiaomei KONG ; Xiao YU ; Gaisheng LIU ; Fan YANG ; Jun DONG ; Jin YANG
Environmental Health and Preventive Medicine 2025;30():26-26
BACKGROUND:
It is inaccurate to reflect the level of dust exposure through working years. Furthermore, identifying a predictive indicator for lung function decline is significant for coal miners. The study aimed to explored whether club cell secretory protein (CC16) levels can reflect early lung function changes.
METHODS:
The cumulative respiratory dust exposure (CDE) levels of 1,461 coal miners were retrospectively assessed by constructed a job-exposure matrix to replace working years. Important factors affecting lung function and CC16 were selected by establishing random forest models. Subsequently, the potential of CC16 to reflect lung injury was explored from multiple perspectives. First, restricted cubic spline (RCS) models were used to compare the trends of changes in lung function indicators and plasma CC16 levels after dust exposure. Then mediating analysis was performed to investigate the role of CC16 in the association between dust exposure and lung function decline. Finally, the association between baseline CC16 levels and follow-up lung function was explored.
RESULTS:
The median CDE were 35.13 mg/m3-years. RCS models revealed a rapid decline in forced vital capacity (FVC), forced expiratory volume in the first second (FEV1), and their percentages of predicted values when CDE exceeded 25 mg/m3-years. The dust exposure level (<5 mg/m3-years) causing significant changes in CC16 was much lower than the level (25 mg/m3-years) that caused changes in lung function indicators. CC16 mediated 11.1% to 26.0% of dust-related lung function decline. Additionally, workers with low baseline CC16 levels experienced greater reductions in lung function in the future.
CONCLUSIONS
CC16 levels are more sensitive than lung indicators in reflecting early lung function injury and plays mediating role in lung function decline induced by dust exposure. Low baseline CC16 levels predict poor future lung function.
Uteroglobin/blood*
;
Humans
;
Dust/analysis*
;
Occupational Exposure/analysis*
;
Male
;
Middle Aged
;
Adult
;
Retrospective Studies
;
Lung Injury/chemically induced*
;
Coal Mining
;
Biomarkers/blood*
;
China/epidemiology*
;
Air Pollutants, Occupational
;
Female
5.Air pollution and adult hospital admissions for ischemic stroke: a time-series analysis in Inner Mongolia, China.
Sen FENG ; Chunhua LI ; Yujing JIN ; Haibo WANG ; Ruying WANG ; Zakaria Ahmed MOHAMED ; Yulong ZHANG ; Yan YAO
Environmental Health and Preventive Medicine 2025;30():29-29
BACKGROUND:
Previous studies have demonstrated that short-term exposure to ambient particulate matter elevates the risk of ischemic stroke in major urban areas of various countries. However, there is a notable gap in research focusing on remote areas inhabited by ethnic minorities and the cumulative effects of air pollutants. Our study conducted in the area aims to explore the potential association between ischemic stroke and air pollutants and contribute to improving health outcomes among the community.
METHODS:
This retrospective observational study was conducted at the Xing'an League People's Hospital in Inner Mongolia. The medical records of 4,288 patients admitted for IS between November 1, 2019, and October 31, 2020, were reviewed. Data on demographics (age and sex), air pollutants (PM10, PM2.5, NO2, NO, CO, and O3), and meteorological factors (daily average temperature, daily average wind speed, and daily average atmosphere pressure) were collected and analyzed. The statistical analysis included descriptive statistics, Poisson distribution analysis to evaluate the adverse effects of atmospheric pollutants on daily hospitalizations, and subgroup analysis to determine whether gender and age could modify the impact on hospitalizations.
RESULTS:
A substantial correlation was revealed in single-day lags model. The peak delayed effects of PM10, PM2.5, SO2, and NO2 were observed at lag8 (PM10 (OR = 1.016, 95%CI 1.002, 1.030), PM2.5 (OR = 1.027, 95%CI 1.007, 1.048), SO2 (OR = 1.153, 95%CI 1.040, 279) and NO2 (OR = 1.054, 95%CI 1.005, 1.105)) while males exhibited a consistent trend from lag0 to lag8 (PM10 (OR = 1.035, 95%CI 1.018, 1.053), PM2.5 (OR = 1.056, 95%CI 1.030, 1.082), SO2 (OR = 1.220, 95%CI 1.072, 1.389), NO2 (OR = 1.126, 95%CI 1.061, 1.120), CO (OR = 10.059, 95%CI 1.697, 59.638) and O3 (OR = 0.972, 95%CI 0.946, 0.999)). When gender and age were considered, a positive impact was also observed after three days cumulative effect in males.
CONCLUSIONS
There is a significant cumulative effect of exposure to air pollution on IS hospital admissions, especially the males and patients under the age of 65. Our results also suggested that a notable association between CO and NO2 in two-pollutant models.
Humans
;
Male
;
Female
;
Air Pollution/analysis*
;
China/epidemiology*
;
Retrospective Studies
;
Middle Aged
;
Air Pollutants/analysis*
;
Aged
;
Particulate Matter/analysis*
;
Hospitalization/statistics & numerical data*
;
Adult
;
Ischemic Stroke/chemically induced*
;
Environmental Exposure/adverse effects*
;
Aged, 80 and over
6.Epidemiological studies on the health impact of air pollution in Japan: their contribution to the improvement of ambient air quality.
Environmental Health and Preventive Medicine 2025;30():30-30
In Japan, during the high economic growth period (1950-1960s), air pollution due to sulfur dioxide (SO2) and dust derived from large-scale factories and power plants was apparent in many industrial districts, and it caused serious health problems such as the so-called "Yokkaichi Asthma." Many epidemiological studies have revealed the relationship between air pollution and respiratory diseases, and have provided scientific evidence for the regulatory control of air pollution. The concentration of SO2 has markedly decreased since the 1970s, and its adverse health effects have improved. In contrast, increased automobile traffic has caused considerable traffic-related air pollution, including nitrogen oxides (NOx) and particulate matter (PM). Epidemiological studies in Chiba and Tokyo revealed that the prevalence and incidence of asthma were significantly higher among individuals living in roadside areas than among those living in other areas. Large-scale epidemiological studies conducted in urban districts have revealed an association between traffic-related air pollution and the onset of asthma in schoolchildren and persistence of asthmatic symptoms in preschool children. Thereafter, the concentrations of NOx and PM gradually decreased due to the control measures based on the Automobile NOx/PM Law enforced in 2001. Thus, epidemiological studies have contributed to a reduction in air pollution caused by automobile exhaust emissions. Recently, the adverse health effects of ambient fine PM (PM2.5) and ozone (O3) at ground level have become an international concern. Our epidemiological studies showed that short-term exposure to considerably low concentrations of PM2.5 and O3 was associated with a decrease in pulmonary function among asthmatic children and increased airway inflammation in healthy adolescents. The effects of exposure to PM2.5 during pregnancy and early childhood on children's development have also been reported. These air pollutants consist of not only emissions from primary sources but also secondary formations in the atmosphere. They are affected by climate change and spread worldwide. Air quality control measures and climate change adaptation and mitigation strategies are synergistic, and will have co-benefits on human health. Therefore, global efforts are required to protect populations from the health risks posed by these air pollutants.
Japan/epidemiology*
;
Humans
;
Air Pollution/analysis*
;
Air Pollutants/adverse effects*
;
Particulate Matter/adverse effects*
;
Asthma/chemically induced*
;
Vehicle Emissions
;
Epidemiologic Studies
;
Environmental Exposure/adverse effects*
;
Sulfur Dioxide/analysis*
7.Can greenspace modify the combined effects of multiple air pollutants on pulmonary tuberculosis treatment outcomes? An empirical study conducted in Zhejiang Province, China.
Bo XIE ; Maolin WU ; Zhe PANG ; Bin CHEN
Environmental Health and Preventive Medicine 2025;30():31-31
BACKGROUND:
Evidence on the combined effects of air pollutants and greenspace exposure on pulmonary tuberculosis (PTB) treatment is limited, particularly in developing countries with high levels of air pollution.
OBJECTIVE:
We aimed to examine the individual and combined effects of long-term exposure to air pollutants on PTB treatment outcomes while also investigating the potential modifying effect of greenspace.
METHODS:
This population-based study included 82,784 PTB cases notified in Zhejiang Province, China, from 2015 to 2019. The 24-month average concentrations of particulate matter with an aerodynamic diameter ≤2.5 µm (PM2.5), ozone (O3), nitrogen dioxide (NO2), and sulfur dioxide (SO2) before PTB diagnosis were estimated using a dataset derived from satellite-based machine learning models and monitoring stations. Greenspace exposure was assessed using the annual China Land Cover Dataset. We conducted analyses using time-varying Cox proportional hazards models and cumulative risk indices.
RESULTS:
In individual effect models, each 10 µg/m3 increase in PM2.5, NO2, O3, and SO2 concentrations was associated with hazard ratios for PTB treatment success of 0.95 (95% confidence interval (CI): 0.93-0.97), 0.92 (95% CI: 0.91-0.94), 0.98 (95% CI: 0.97-0.99), and 1.52 (95% CI: 1.49-1.56), respectively. In combined effect models, long-term exposure to the combination of air pollutants was negatively associated with PTB treatment success, with a joint hazard ratio (JHR) of 0.79 (95% CI: 0.63-0.96). Among the pollutants examined, O3 contributed the most to the increased risks, followed by PM2.5 and NO2. Additionally, areas with moderate levels of greenspace showed a reduced risk (JHR = 0.81, 95% CI: 0.62-0.98) compared with the estimate from the third quantile model (JHR = 0.68, 95% CI: 0.52-0.83).
CONCLUSIONS
Combined air pollutants significantly impede successful PTB treatment outcomes, with O3 and PM2.5 accounting for nearly 75% of this detrimental effect. Moderate levels of greenspace can mitigate the adverse effects associated with combined air pollutants, leading to improved treatment success for patients with PTB.
Humans
;
China/epidemiology*
;
Air Pollutants/analysis*
;
Tuberculosis, Pulmonary/drug therapy*
;
Particulate Matter/adverse effects*
;
Male
;
Female
;
Middle Aged
;
Environmental Exposure/analysis*
;
Ozone/adverse effects*
;
Adult
;
Sulfur Dioxide/adverse effects*
;
Treatment Outcome
;
Air Pollution/adverse effects*
;
Aged
;
Nitrogen Dioxide/adverse effects*
;
Young Adult
;
Adolescent
8.Association of short-term air pollution with risk of major adverse cardiovascular event mortality and modification effects of lifestyle in Chinese adults.
Wendi XIAO ; Xin YAO ; Yinqi DING ; Junpei TAO ; Canqing YU ; Dianjianyi SUN ; Pei PEI ; Ling YANG ; Yiping CHEN ; Huaidong DU ; Dan SCHMIDT ; Yaoming ZHAI ; Junshi CHEN ; Zhengming CHEN ; Jun LV ; Liqiang ZHANG ; Tao HUANG ; Liming LI
Environmental Health and Preventive Medicine 2025;30():38-38
BACKGROUND:
Previous evidence showed that ambient air pollution and cardiovascular mortality are related. However, there is a lack of evidence towards the modification effect of long-term lifestyle on the association between short-term ambient air pollution and death from cardiovascular events.
METHOD:
A total of 14,609 death from major adverse cardiovascular events (MACE) were identified among the China Kadoorie Biobank participants from 2013 to 2018. Ambient air pollution exposure including particulate matter 2.5 (PM2.5), SO2, NO2, CO, and O3 from the same period were obtained from space-time model reconstructions based on remote sensing data. Case-crossover design and conditional logistic regression was applied to estimate the effect of short-term exposure to air pollutants on MACE mortality.
RESULTS:
We found MACE mortality was significantly associated with PM2.5 (relative percent increase 2.91% per 10 µg/m3 increase, 95% CI 1.32-4.53), NO2 (5.37% per 10 µg/m3 increase, 95% CI 1.56-9.33), SO2 (6.82% per 10 µg/m3 increase, 95% CI 2.99-10.80), and CO (2.24% per 0.1 mg/m3 increase, 95% CI 1.02-3.48). Stratified analyses indicated that drinking was associated with elevated risk of MACE mortality with NO2 and SO2 exposure; physical inactivity was associated with higher risk of death from MACE when exposed to PM2.5; and people who had balanced diet had lower risk of MACE mortality when exposed to CO and NO2.
CONCLUSIONS
The study results showed that short-term exposure to ambient PM2.5, NO2, SO2, and CO would aggravate the risk of cardiovascular mortality, yet healthy lifestyle conduct might mitigate such negative impact to some extent.
Humans
;
Cardiovascular Diseases/epidemiology*
;
China/epidemiology*
;
Male
;
Female
;
Air Pollution/adverse effects*
;
Middle Aged
;
Air Pollutants/analysis*
;
Particulate Matter/analysis*
;
Environmental Exposure/adverse effects*
;
Life Style
;
Aged
;
Adult
;
Risk Factors
;
Cross-Over Studies
;
East Asian People
9.The increased risk of exposure to fine particulate matter for depression incidence is mediated by elevated TNF-R1: the Healthy Aging Longitudinal Study.
Ta-Yuan CHANG ; Ting-Yu ZHUANG ; Yun-Chieh YANG ; Chih-Cheng HSU ; Wan-Ju CHENG
Environmental Health and Preventive Medicine 2025;30():49-49
BACKGROUND:
Depression among older adults is an important public health issue, and air and noise pollution have been found to contribute to exacerbation of depressive symptoms. This study examined the association of exposure to air and noise pollutants with clinically-newly-diagnosed depressive disorder. The mediating role of individual pro-inflammatory markers was explored.
METHODS:
We linked National Health Insurance claim data with 2998 healthy community-dwellers aged 55 and above who participated in the Healthy Aging Longitudinal Study between 2009 and 2013. Newly diagnosed depressive disorder was identified using diagnostic codes from the medical claim data. Pollutants were estimated using nationwide land use regression, including PM2.5 and PM10, carbon monoxide, ozone, nitrogen dioxide, sulfur dioxide, and road traffic noise. Cox proportional hazard models were employed to examine the association between pollutants and newly developed depressive disorders. The mediating effect of serum pro-inflammatory biomarkers on the relationship was examined.
RESULTS:
Among the 2998 participants, 209 had newly diagnosed depressive disorders. In adjusted Cox proportional hazard models, one interquartile range increase in PM2.5 (8.53 µg/m3) was associated with a 17.5% increased hazard of developing depressive disorders. Other air pollutants and road traffic noise were not linearly associated with depressive disorder incidence. Levels of serum tumor necrosis factor receptor 1 mediated the relationship between PM2.5 and survival time to newly onset depressive disorder.
CONCLUSION
PM2.5 is related to an increased risk of newly developed depressive disorder among middle-aged and older adults, and the association is partially mediated by the pro-inflammatory marker TNF-R1.
Humans
;
Particulate Matter/analysis*
;
Male
;
Female
;
Middle Aged
;
Longitudinal Studies
;
Aged
;
Incidence
;
Air Pollutants/analysis*
;
Environmental Exposure/adverse effects*
;
Taiwan/epidemiology*
;
Receptors, Tumor Necrosis Factor, Type I/blood*
;
Proportional Hazards Models
;
Biomarkers/blood*
;
Depression/epidemiology*
;
Aged, 80 and over
;
Depressive Disorder/chemically induced*
;
Risk Factors
;
Air Pollution/adverse effects*
10.Air pollution exposure associated with decline rates in skeletal muscle mass and grip strength and increase rate in body fat in elderly: a 5-year follow-up study.
Chi-Hsien CHEN ; Li-Ying HUANG ; Kang-Yun LEE ; Chih-Da WU ; Shih-Chun PAN ; Yue Leon GUO
Environmental Health and Preventive Medicine 2025;30():56-56
BACKGROUND:
The effect of air pollution on annual change rates in grip strength and body composition in the elderly is unknown.
OBJECTIVES:
This study evaluated the effects of long-term exposure to ambient air pollution on change rates of grip strength and body composition in the elderly.
METHODS:
In the period 2016-2020, grip strength and body composition were assessed and measured 1-2 times per year in 395 elderly participants living in the Taipei basin. Exposure to ambient fine particulate matters (PM2.5), nitric dioxide (NO2), and ozone (O3) from 2015 to 2019 was estimated using a hybrid Kriging/Land-use regression model. In addition, long-term exposure to carbon monoxide (CO) was estimated using an ordinary Kriging approach. Associations between air pollution exposures and annual changes in health outcomes were analyzed using linear mixed-effects models.
RESULTS:
An inter-quartile range (4.1 µg/m3) increase in long-term exposure to PM2.5 was associated with a faster decline rate in grip strength (-0.16 kg per year) and skeletal muscle mass (-0.14 kg per year), but an increase in body fat mass (0.21 kg per year). The effect of PM2.5 remained robust after adjustment for NO2, O3 and CO exposure. In subgroup analysis, the PM2.5-related decline rate in grip strength was greater in participants with older age (>70 years) or higher protein intake, whereas in skeletal muscle mass, the decline rate was more pronounced in participants having a lower frequency of moderate or strenuous exercise. The PM2.5-related increase rate in body fat mass was higher in participants having a lower frequency of strenuous exercise or soybean intake.
CONCLUSIONS
Among the elderly, long-term exposure to ambient PM2.5 is associated with a faster decline in grip strength and skeletal muscle mass, and an increase in body fat mass. Susceptibility to PM2.5 may be influenced by age, physical activity, and dietary protein intake; however, these modifying effects vary across different health outcomes, and further research is needed to clarify their mechanisms and consistency.
Humans
;
Hand Strength
;
Aged
;
Male
;
Female
;
Environmental Exposure/adverse effects*
;
Follow-Up Studies
;
Taiwan
;
Air Pollution/adverse effects*
;
Particulate Matter/adverse effects*
;
Muscle, Skeletal/drug effects*
;
Air Pollutants/adverse effects*
;
Ozone/adverse effects*
;
Aged, 80 and over
;
Adipose Tissue/drug effects*
;
Body Composition/drug effects*
;
Nitrogen Dioxide/adverse effects*

Result Analysis
Print
Save
E-mail