1.Characteristics and seasonal variations of PM2.5, PM10, and TSP aerosol in Beijing.
Wen-Jie ZHANG ; Ye-Le SUN ; Guo-Shun ZHUANG ; Dong-Qun XU
Biomedical and Environmental Sciences 2006;19(6):461-468
OBJECTIVETo investigate the seasonal characteristics and the sources of elements and ions with different sizes in the aerosols in Beijing.
METHODSSamples of particulate matters (PM2.5), PM10, and total suspended particle (TSP) aerosols were collected simultaneously in Beijing from July 2001 to April 2003. The aerosol was chemically characterized by measuring 23 elements and 18 water-soluble ions by inductively coupled plasma-atomic emission spectroscopy (ICP-AES) and ion chromatography (IC), respectively.
RESULTSThe samples were divided into four categories: spring non-dust, spring dust, summer dust, and winter dust. TSP, PM10, and PM2.5 were most abundant in the spring dust, and the least in summer dust. The average mass ratios of PM > 10, PM2.5-10, and PM2.5 to TSP confirmed that in the spring dust both the large coarse (PM > 10) and fine particles (PM2.5) contributed significantly in summer PM2.5, PM2.5-10, and PM > 10 contributed similar fractions to TSP, and in winter much PM2.5. The seasonal variation characteristics of the elements and ions were used to divide them into four groups: crustal, pollutant, mixed, and secondary. The highest levels of crustal elements, such as Al, Fe, and Ca, were found in the dust season, the highest levels of pollutant elements and ions, such as As, F-, and Cl-, were observed in winter, and the highest levels of secondary ions (SO4(2-), NO3-, and NH4+) were seen both in summer and in winter. The mixed group (Eu, Ni, and Cu) showed the characteristics of both crustal and pollutant elements. The mineral aerosol from outside Beijing contributed more than that from the local part in all the reasons but summer, estimated using a newly developed element tracer technique.
Aerosols ; China ; Chromatography, Ion Exchange ; Environmental Monitoring ; Particle Size ; Particulate Matter ; analysis ; chemistry ; Seasons ; Spectrophotometry, Atomic
2.The crucial toxic components of ambient fine particles promoted the maturation and differentiation of megakaryocytes.
Li Ting XU ; Ze ZHANG ; Hai Yi YU ; Xiao Ting JIN ; Yu Xin ZHENG
Chinese Journal of Preventive Medicine 2022;56(9):1314-1322
Objective: To reveal the crucial toxic components of ambient fine particles (PM2.5) that affect the maturation and differentiation of megakaryocytes. Methods: Human megakaryocytes were exposed to the organic fractions, metallic fractions and water-soluble fractions of PM2.5 at two exposure doses (i.e. actual air proportion concentration or the same concentration), respectively. The cell viability was performed to screen the non-cytotoxic levels of toxic components of PM2.5 using the CCK-8 assay. CellTiter-Blue assay, morphological observation, flow cytometry analysis and WGA staining assay were used to evaluate the cell morphological changes, occurrence of DNA ploidy, alteration in the expressions of biomarkers and platelet formation, which were key indicators of the maturation and differentiation of megakaryocytes. Results: Compared to the control group, both metallic and organic components of PM2.5 resulted in a lag in megakaryocytes with an increase in cell volume and the onset of DNA ploidy. Flow cytometry analysis showed that CD33 (the marker of myeloid-specific) decreased and CD41a (a megakaryocyte maturation-associated antigen) increased in metallic and organic components of PM2.5 treatment groups. Moreover, compared to the control group, budding protrusions increased in metallic and organic components of PM2.5 treatment groups. The water-soluble components had no effect on the maturation and differentiation of macrophages. Conclusion: Metallic and organic components of PM2.5 are the crucial toxic components that promote the maturation and differentiation of megakaryocytes.
Biomarkers
;
DNA/pharmacology*
;
Humans
;
Megakaryocytes/chemistry*
;
Particulate Matter/toxicity*
;
Sincalide/pharmacology*
;
Water/pharmacology*
3.Environmental Source of Arsenic Exposure.
Jin Yong CHUNG ; Seung Do YU ; Young Seoub HONG
Journal of Preventive Medicine and Public Health 2014;47(5):253-257
Arsenic is a ubiquitous, naturally occurring metalloid that may be a significant risk factor for cancer after exposure to contaminated drinking water, cigarettes, foods, industry, occupational environment, and air. Among the various routes of arsenic exposure, drinking water is the largest source of arsenic poisoning worldwide. Arsenic exposure from ingested foods usually comes from food crops grown in arsenic-contaminated soil and/or irrigated with arsenic-contaminated water. According to a recent World Health Organization report, arsenic from contaminated water can be quickly and easily absorbed and depending on its metabolic form, may adversely affect human health. Recently, the US Food and Drug Administration regulations for metals found in cosmetics to protect consumers against contaminations deemed deleterious to health; some cosmetics were found to contain a variety of chemicals including heavy metals, which are sometimes used as preservatives. Moreover, developing countries tend to have a growing number of industrial factories that unfortunately, harm the environment, especially in cities where industrial and vehicle emissions, as well as household activities, cause serious air pollution. Air is also an important source of arsenic exposure in areas with industrial activity. The presence of arsenic in airborne particulate matter is considered a risk for certain diseases. Taken together, various potential pathways of arsenic exposure seem to affect humans adversely, and future efforts to reduce arsenic exposure caused by environmental factors should be made.
Arsenic/*analysis
;
Cosmetics/chemistry
;
Drinking Water/chemistry
;
*Environmental Exposure
;
Humans
;
Particulate Matter/chemistry
;
Smoking
;
Water Pollutants, Chemical/*analysis
4.Environmental Source of Arsenic Exposure.
Jin Yong CHUNG ; Seung Do YU ; Young Seoub HONG
Journal of Preventive Medicine and Public Health 2014;47(5):253-257
Arsenic is a ubiquitous, naturally occurring metalloid that may be a significant risk factor for cancer after exposure to contaminated drinking water, cigarettes, foods, industry, occupational environment, and air. Among the various routes of arsenic exposure, drinking water is the largest source of arsenic poisoning worldwide. Arsenic exposure from ingested foods usually comes from food crops grown in arsenic-contaminated soil and/or irrigated with arsenic-contaminated water. According to a recent World Health Organization report, arsenic from contaminated water can be quickly and easily absorbed and depending on its metabolic form, may adversely affect human health. Recently, the US Food and Drug Administration regulations for metals found in cosmetics to protect consumers against contaminations deemed deleterious to health; some cosmetics were found to contain a variety of chemicals including heavy metals, which are sometimes used as preservatives. Moreover, developing countries tend to have a growing number of industrial factories that unfortunately, harm the environment, especially in cities where industrial and vehicle emissions, as well as household activities, cause serious air pollution. Air is also an important source of arsenic exposure in areas with industrial activity. The presence of arsenic in airborne particulate matter is considered a risk for certain diseases. Taken together, various potential pathways of arsenic exposure seem to affect humans adversely, and future efforts to reduce arsenic exposure caused by environmental factors should be made.
Arsenic/*analysis
;
Cosmetics/chemistry
;
Drinking Water/chemistry
;
*Environmental Exposure
;
Humans
;
Particulate Matter/chemistry
;
Smoking
;
Water Pollutants, Chemical/*analysis
5.Potential Toxicological and Cardiopulmonary Effects of PM2.5 Exposure and Related Mortality: Findings of Recent Studies Published during 2003-2013.
Mohammed O A MOHAMMED ; Wei Wei SONG ; Wan Li MA ; Wen Long LI ; Yi Fan LI ; Afed Ullah KHAN ; Mohammed A E M IBRAHIM ; Osman Adam MAAROUF ; Alshebli A AHMED ; John J AMBUCHI
Biomedical and Environmental Sciences 2016;29(1):66-79
6.PM10 Exposure and Non-accidental Mortality in Asian Populations: A Meta-analysis of Time-series and Case-crossover Studies.
Hye Yin PARK ; Sanghyuk BAE ; Yun Chul HONG
Journal of Preventive Medicine and Public Health 2013;46(1):10-18
OBJECTIVES: We investigated the association between particulate matter less than 10 microm in aerodynamic diameter (PM10) exposure and non-accidental mortality in Asian populations by meta-analysis, using both time-series and case-crossover analysis. METHODS: Among the 819 published studies searched from PubMed and EMBASE using key words related to PM10 exposure and non-accidental mortality in Asian countries, 8 time-series and 4 case-crossover studies were selected for meta-analysis after exclusion by selection criteria. We obtained the relative risk (RR) and 95% confidence intervals (CI) of non-accidental mortality per 10 microg/m3 increase of daily PM10 from each study. We used Q statistics to test the heterogeneity of the results among the different studies and evaluated for publication bias using Begg funnel plot and Egger test. RESULTS: Testing for heterogeneity showed significance (p<0.001); thus, we applied a random-effects model. RR (95% CI) per 10 microg/m3 increase of daily PM10 for both the time-series and case-crossover studies combined, time-series studies relative risk only, and case-crossover studies only, were 1.0047 (1.0033 to 1.0062), 1.0057 (1.0029 to 1.0086), and 1.0027 (1.0010 to 1.0043), respectively. The non-significant Egger test suggested that this analysis was not likely to have a publication bias. CONCLUSIONS: We found a significant positive association between PM10 exposure and non-accidental mortality among Asian populations. Continued investigations are encouraged to contribute to the health impact assessment and public health management of air pollution in Asian countries.
Air Pollutants/*chemistry
;
Asian Continental Ancestry Group
;
Cross-Over Studies
;
Databases, Factual
;
*Environmental Exposure
;
Humans
;
Models, Theoretical
;
*Mortality
;
Particulate Matter/*chemistry
;
Time Factors
7.Daily visibility and hospital admission in Shanghai, China.
WenZhen GE ; RenJie CHEN ; WeiMin SONG ; HaiDong KAN
Biomedical and Environmental Sciences 2011;24(2):117-121
OBJECTIVEThe study is to investigate the associations between visibility, major air pollutants and daily counts of hospital admission in Shanghai, China.
METHODSDaily data on hospital admission, visibility, and air pollution during 2005-2008 were obtained from the Shanghai Insurance Bureau (SHIB), Shanghai Meteorological Bureau, and Shanghai Environmental Monitoring Center, respectively. The generalized additive model (GAM) with penalized splines was used to examine the associations between daily visibility and hospital admission.
RESULTSAmong various pollutants, PM(2.5) showed strongest correlation with visibility. Decreased visibility was significantly associated with increased risk of hospital admission in Shanghai. An inter-quartile range decrease in the 2-day (L01) moving average of visibility corresponded to 3.66% (95%CI: 1.02%, 6.31%), 4.06% (95%CI: 0.84%, 7.27%), and 4.32% (95%CI: 1.67%, 6.97%) increase of total, cardiovascular, and respiratory hospitalizations, respectively.
CONCLUSIONOur analyses provide the first piece of evidence in China, demonstrating that decreased visibility has an effect on hospital admission, and this finding strengthens the rationale for further limiting air pollution levels in Shanghai.
Air Pollutants ; chemistry ; Cardiovascular Diseases ; epidemiology ; pathology ; China ; epidemiology ; Hospitalization ; Humans ; Particulate Matter ; chemistry ; Respiratory Tract Diseases ; epidemiology ; pathology ; Risk Factors ; Weather
8.Effects of Lianhua Qingwen on Pulmonary Oxidative Lesions Induced by Fine Particulates (PM2.5) in Rats.
Fen PING ; Zhensheng LI ; Fengrui ZHANG ; Dexin LI ; Shuzhi HAN
Chinese Medical Sciences Journal 2016;31(4):233-238
Objective To investigate the antagonistic effects of different doses of Lianhua Qingwen on pulmonary injury induced by fine particulates PM2.5 in rats. Methods Fine particulates suspended in the environment were collected. Forty-eight healthy adult wistar rats were randomly divided into 6 groups with 8 rats in each group. Four groups of rats were exposed to PM2.5 by intratracheally dripping suspensions of fine particulates PM2.5 (7.5 mg/kg) as dust-exposed model rats. Among them 24 rats in three groups received Lianhua Qingwen treatment (crude drug) at a dose of 2 g/kg, 4 g/kg, 8 g/kg per day for 3 days before dust exposure and were defined as low-dose, middle-dose and high-dose Lianhua Qingwen treatment groups respectively. The other dust-exposed model rats without treatment were assigned as PM2.5 control group. The un-exposed rats were set as saline control group (1.5 ml/kg saline) and blank control group. All rats were killed after 24 hours of the exposure. Lung tissue, serum and bronchoalveolar lavage fluid (BALF) were collected. The levels of malonaldehyde (MDA), lactate dehydrogenase (LDH), and glutathione peroxidase (GSH-PX) in blood serum and BALF, and superoxide dismutase (SOD) in blood surum were measured using fluorescent quantitation PCR; Expression of NF-E2-related factor 2(NRF-2), heme oxygenase 1 (HO-1) and quinone oxidoreductase 1 (NQO1) in lung tissues were measured using Western blot. Pathological changes of lung tissues in each group were also examined. Results Pathology revealed thickened alveolar septum, congestion of capillary, interstitial edema and infiltration of lymphocyte and neutrophil surrounding bronchiole in the PM2.5 control group, which were significantly relieved in the Lianhua Qingwen treatment groups. Compared to the blank and saline control groups, the PM2.5 control group had significantly higher levels of LDH and MDA (p<0.01) and lower level of GSH-PS (p<0.01) in BALF, significantly higher levels of LDH and MDA (p<0.05) and lower level of GSH-PS (p<0.05) in rat serum. The levels of MDA in blood serum and BALF were significantly lower in each treatment group than that in PM2.5 control group (all P<0.05). In both middle-dose and high-dose treatment group the measurements of LDH in serum and BALF as well as GSH-PX in serum were significant difference from those of PM2.5 control group (all P<0.05). Expressions of NRF-2, HO-1 and NQO1 in lung tissues were significantly different among middle-dose and high-dose treatment group compared with those in PM2.5 control group (all P<0.05). Conclusion Fine particulates PM2.5 in environment may induce pulmonary oxidative lesions in rats. Middle-dose and high-dose Lianhua Qingwen has antagonist effece on the injuries induced by fine particulates.
Animals
;
Bronchoalveolar Lavage Fluid
;
chemistry
;
Drugs, Chinese Herbal
;
therapeutic use
;
Lung
;
metabolism
;
pathology
;
Lung Injury
;
drug therapy
;
etiology
;
metabolism
;
Male
;
Particulate Matter
;
toxicity
;
Rats
;
Rats, Wistar
9.Airborne fine particulate matter induced pulmonary inflammation as well as oxidative stress in neonate rats.
Li-ren DING ; Kai WANG ; Baher FAHMY ; Hua-hao SHEN ; Stephania CORMIER
Chinese Medical Journal 2010;123(20):2895-2900
BACKGROUNDAirborne fine particulate matter (PM) can induce pulmonary inflammation which may adversely affect human health, but very few reports about its effect on the neonate rats are available. This study aimed to observe the potential impact and toxicity of fine PMs on the airway in neonate rats.
METHODSPulmonary inflammation, cytotoxicity, histopathology, and antioxidants as well as oxidant products were assessed 24 hours after intratracheal instillation of fine PM consecutively for 3 days. Cytotoxicity of fine PM was measured in HEp-2 cells.
RESULTSRats treated with high dose fine PM developed significant pulmonary inflammation characterized by neutrophil and macrophage infiltration. The inflammatory process was related to elevated level of TNF-α and prooxidant/antioxidant imbalance in the lung. Cytotoxicity studies performed in human epithelial cells indicated that high dose fine PM significantly reduced cell viability.
CONCLUSIONThe study demonstrated acute exposure to fine PM induced airway inflammation as well as increased oxidative stress in addition to its direct toxic effect on airway epithelium cells.
Animals ; Animals, Newborn ; Bronchoalveolar Lavage Fluid ; chemistry ; Glutathione ; metabolism ; Male ; Oxidative Stress ; Particulate Matter ; toxicity ; Pneumonia ; etiology ; Rats ; Rats, Sprague-Dawley ; Tumor Necrosis Factor-alpha ; analysis
10.Physical and chemical characteristics of PM2.5 and its toxicity to human bronchial cells BEAS-2B in the winter and summer.
Hui-Hui ZHANG ; Zheng LI ; Yu LIU ; Ping XINAG ; Xin-Yi CUI ; Hui YE ; Bao-Lan HU ; Li-Ping LOU
Journal of Zhejiang University. Science. B 2018;19(4):317-326
With the increasing occurrence of haze during the summer, the physicochemical characteristics and toxicity differences in PM2.5 in different seasons are of great concern. Hangzhou is located in an area that has a subtropical monsoon climate where the humidity is very high during both the summer and winter. However, there are limited studies on the seasonal differences in PM2.5 in these weather conditions. In this test, PM2.5 samples were collected in the winter and summer, the morphology and chemical composition of PM2.5 were analyzed, the toxicity of PM2.5 to human bronchial cells BEAS-2B was compared, and the correlation between PM2.5 toxicity and the chemical composition was discussed. The results showed that during both the winter and summer, the main compounds in the PM2.5 samples were water-soluble ions, particularly SO42-, NO3-, and NH4+, followed by organic components, while heavy metals were present at lower levels. The higher the mass concentration of PM2.5, the greater its impact on cell viability and ROS levels. However, when the mass concentration of PM2.5 was similar, the water extraction from the summer samples showed a greater impact on BEAS-2B than that from the winter samples. The cytotoxicity of PM2.5 was closely associated with heavy metals and organic pollutants but less related to water-soluble ions.
Air Pollutants/toxicity*
;
Bronchi/metabolism*
;
Carbon/chemistry*
;
Environmental Monitoring
;
Humans
;
Ions
;
Metals, Heavy
;
Organic Chemicals
;
Particle Size
;
Particulate Matter/toxicity*
;
Seasons
;
Temperature
;
Water