1.The Role of Prefrontal and Posterior Parietal Cortex in Generating Multiple Step Saccades.
Wenbo MA ; Zhaohuan DING ; Leixiao FENG ; Xiaoli LI ; Mingsha ZHANG
Neuroscience Bulletin 2025;41(8):1418-1428
While multiple step saccades (MSS) are occasionally reported in the healthy population, they are more evident in patients with Parkinson's disease (PD). Therefore, MSS has been suggested as a biological marker for the diagnosis of PD. However, the lack of clarity on the neural mechanism underlying the generation of MSS largely impedes their application in the clinic. We have proposed recently that MSS are triggered by the discrepancy between desired and executed saccades. Accordingly, brain regions involved in saccadic planning and execution might play a role in the generation of MSS. To test this hypothesis, we explored the role of the prefrontal (PFC) and posterior parietal cortex (PPC) in generating MSS by conducting two experiments: electroencephalographic recording and single-pulse transcranial magnetic stimulation in the PFC or PPC of humans while participants were performing a gap saccade task. We found that the PFC and PPC are involved in the generation of MSS.
Humans
;
Parietal Lobe/physiology*
;
Saccades/physiology*
;
Prefrontal Cortex/physiology*
;
Male
;
Transcranial Magnetic Stimulation
;
Female
;
Electroencephalography
;
Adult
;
Young Adult
2.Neural Dynamics of Visual Stream Interactions During Memory-Guided Actions Investigated by Intracranial EEG.
Sofiia MORARESKU ; Jiri HAMMER ; Vasileios DIMAKOPOULOS ; Michaela KAJSOVA ; Radek JANCA ; Petr JEZDIK ; Adam KALINA ; Petr MARUSIC ; Kamil VLCEK
Neuroscience Bulletin 2025;41(8):1347-1363
The dorsal and ventral visual streams have been considered to play distinct roles in visual processing for action: the dorsal stream is assumed to support real-time actions, while the ventral stream facilitates memory-guided actions. However, recent evidence suggests a more integrated function of these streams. We investigated the neural dynamics and functional connectivity between them during memory-guided actions using intracranial EEG. We tracked neural activity in the inferior parietal lobule in the dorsal stream, and the ventral temporal cortex in the ventral stream as well as the hippocampus during a delayed action task involving object identity and location memory. We found increased alpha power in both streams during the delay, indicating their role in maintaining spatial visual information. In addition, we recorded increased alpha power in the hippocampus during the delay, but only when both object identity and location needed to be remembered. We also recorded an increase in theta band phase synchronization between the inferior parietal lobule and ventral temporal cortex and between the inferior parietal lobule and hippocampus during the encoding and delay. Granger causality analysis indicated dynamic and frequency-specific directional interactions among the inferior parietal lobule, ventral temporal cortex, and hippocampus that varied across task phases. Our study provides unique electrophysiological evidence for close interactions between dorsal and ventral streams, supporting an integrated processing model in which both streams contribute to memory-guided actions.
Humans
;
Male
;
Female
;
Adult
;
Young Adult
;
Hippocampus/physiology*
;
Memory/physiology*
;
Parietal Lobe/physiology*
;
Temporal Lobe/physiology*
;
Visual Perception/physiology*
;
Electrocorticography
;
Visual Pathways/physiology*
;
Electroencephalography
3.Link Brain-Wide Projectome to Neuronal Dynamics in the Mouse Brain.
Xiang LI ; Yun DU ; Jiang-Feng HUANG ; Wen-Wei LI ; Wei SONG ; Ruo-Nan FAN ; Hua ZHOU ; Tao JIANG ; Chang-Geng LU ; Zhuang GUAN ; Xiao-Fei WANG ; Hui GONG ; Xiang-Ning LI ; Anan LI ; Ling FU ; Yan-Gang SUN
Neuroscience Bulletin 2024;40(11):1621-1634
Knowledge about the neuronal dynamics and the projectome are both essential for understanding how the neuronal network functions in concert. However, it remains challenging to obtain the neural activity and the brain-wide projectome for the same neurons, especially for neurons in subcortical brain regions. Here, by combining in vivo microscopy and high-definition fluorescence micro-optical sectioning tomography, we have developed strategies for mapping the brain-wide projectome of functionally relevant neurons in the somatosensory cortex, the dorsal hippocampus, and the substantia nigra pars compacta. More importantly, we also developed a strategy to achieve acquiring the neural dynamic and brain-wide projectome of the molecularly defined neuronal subtype. The strategies developed in this study solved the essential problem of linking brain-wide projectome to neuronal dynamics for neurons in subcortical structures and provided valuable approaches for understanding how the brain is functionally organized via intricate connectivity patterns.
Animals
;
Neurons/physiology*
;
Mice
;
Brain/physiology*
;
Mice, Inbred C57BL
;
Somatosensory Cortex/physiology*
;
Neural Pathways/physiology*
;
Hippocampus/physiology*
;
Mice, Transgenic
;
Male
;
Brain Mapping
;
Nerve Net/physiology*
;
Substantia Nigra/physiology*
;
Tomography, Optical/methods*
4.Neuronal Response to Reward and Luminance in Macaque LIP During Saccadic Choice.
Ziqi WU ; Aihua CHEN ; Xinying CAI
Neuroscience Bulletin 2023;39(1):14-28
Recent work in decision neuroscience suggests that visual saliency can interact with reward-based choice, and the lateral intraparietal cortex (LIP) is implicated in this process. In this study, we recorded from LIP neurons while monkeys performed a two alternative choice task in which the reward and luminance associated with each offer were varied independently. We discovered that the animal's choice was dictated by the reward amount while the luminance had a marginal effect. In the LIP, neuronal activity corresponded well with the animal's choice pattern, in that a majority of reward-modulated neurons encoded the reward amount in the neuron's preferred hemifield with a positive slope. In contrast, compared to their responses to low luminance, an approximately equal proportion of luminance-sensitive neurons responded to high luminance with increased or decreased activity, leading to a much weaker population-level response. Meanwhile, in the non-preferred hemifield, the strength of encoding for reward amount and luminance was positively correlated, suggesting the integration of these two factors in the LIP. Moreover, neurons encoding reward and luminance were homogeneously distributed along the anterior-posterior axis of the LIP. Overall, our study provides further evidence supporting the neural instantiation of a priority map in the LIP in reward-based decisions.
Animals
;
Macaca mulatta/physiology*
;
Parietal Lobe
;
Neurons/physiology*
;
Saccades
;
Reward
;
Photic Stimulation
6.An electroencephalogram-based study of resting-state spectrogram and attention in tinnitus patients.
Haiyun HUANG ; Yuexin CAI ; Xueji FENG ; Yuanqing LI
Journal of Biomedical Engineering 2021;38(3):492-497
The incidence of tinnitus is very high, which can affect the patient's attention, emotion and sleep, and even cause serious psychological distress and suicidal tendency. Currently, there is no uniform and objective method for tinnitus detection and therapy, and the mechanism of tinnitus is still unclear. In this study, we first collected the resting state electroencephalogram (EEG) data of tinnitus patients and healthy subjects. Then the power spectrum topology diagrams were compared of in the band of δ (0.5-3 Hz), θ (4-7 Hz), α (8-13 Hz), β (14-30 Hz) and γ (31-50 Hz) to explore the central mechanism of tinnitus. A total of 16 tinnitus patients and 16 healthy subjects were recruited to participate in the experiment. The results of resting state EEG experiments found that the spectrum power value of tinnitus patients was higher than that of healthy subjects in all concerned frequency bands. The
Attention
;
Brain
;
Electroencephalography
;
Humans
;
Parietal Lobe
;
Tinnitus
8.Cognitive and neural mechanisms underlying working memory.
Acta Physiologica Sinica 2019;71(1):173-185
Working memory (WM) refers to the process of temporally maintaining and manipulating input information. WM is the global workspace of cognitive functions, however, with severely restricted capacity and precision. Previous cognitive and computational models discussed the methods of calculating capacity and precision of WM and the reason why they are so limited. It still remains debated which model is the best across all datasets, and whether there exists upper limits of items. Besides, sensory cortices and the frontal-parietal loop are suggested to represent WM memorandum. Yet recently, the sensory recruitment hypothesis that posits an important role of sensory cortices in WM is strongly argued. Meanwhile, whether the prefrontal cortex shows sustained activity or bursting γ oscillations is intensely debated as well. In the future, disentangling the contribution to WM of feedforward γ vs feedback α/β oscillations, and/or dopamine vs serotonin systems, is critical for understanding the neural mechanisms underlying WM. It will further do help to recognize the basis for the psychiatric (e.g. schizophrenia) or neurological (e.g. Alzheimer's disease) disorders, and potentially to develop effective training and intervening methods.
Cognition
;
Humans
;
Memory, Short-Term
;
Models, Neurological
;
Parietal Lobe
;
physiology
;
Prefrontal Cortex
;
physiology
9.A Comprasion of the Activation of Mirror Neurons Induced by Action Observation between Simple and Complex Hand Movement
Journal of Korean Physical Therapy 2019;31(3):157-160
PURPOSE: We compared the activation pattern of the mirror neurons (MN) between two types of hand movement according to action observation using functional MRI. METHODS: Twelve right-handed healthy subjects (5 male and 7 female, mean age 21.92±2.02 years) participated in the experiment. During fMRI scanning, subjects underwent two different stimuli on the screen: 1) video clips showing repeated grasping and releasing of the ball via simple hand movement (SHM), and (2) video clips showing an actor performing a Purdue Pegboard test via complex hand movement (CHM). paired t-test in statistical parametric mapping (SPM) was used to compare the activation differences between the two types of hand movement. RESULTS: CHM as compared with the SHM produced a higher blood oxygen level dependent (BOLD) signal response in the right superior frontal gyrus, left inferior and superior parietal lobules, and lingual gyrus. However, no greater BOLD signal response was found by SHM compared with CHM (FWE corrected, p<0.05). CONCLUSION: Our findings provided that the activation patterns for observation of SHM and CHM are different. CHM also elicited boarder or stronger activations in the brain, including inferior parietal lobule called the MN region.
Brain
;
Female
;
Hand Strength
;
Hand
;
Healthy Volunteers
;
Humans
;
Magnetic Resonance Imaging
;
Male
;
Mirror Neurons
;
Occipital Lobe
;
Oxygen
;
Parietal Lobe
;
Prefrontal Cortex
10.A Functional Domain Based Approach in Neurocognitive Rehabilitation with Transcranial Direct Current Stimulation: A Case Report
Vanteemar S SREERAJ ; Venkataram SHIVAKUMAR ; Anushree BOSE ; Purohit N ABHIRAM ; Sri Mahavir AGARWAL ; Harleen CHHABRA ; Janardhanan C NARAYANASWAMY ; Ganesan VENKATASUBRAMANIAN
Clinical Psychopharmacology and Neuroscience 2019;17(1):125-129
Transcranial direct current stimulation (tDCS) is a novel brain stimulation technique which has kindled hope in alleviating motor, language as well as cognitive deficits in neuronal injury. Current case report describes application of tDCS in two phases using two different protocols in a patient with hypoxic injury. In the first phase anodal stimulation of dorsolateral prefrontal cortex improved the language fluency. Subsequently, after 6 months second phase application of anodal stimulation over posterior parietal region targeted arithmetic and working memory deficits. Individualising the treatment protocols of brain stimulation, based on the lesion and the functional deficits, for neuro-rehabilitation is emphasised.
Brain
;
Clinical Protocols
;
Cognition Disorders
;
Dyscalculia
;
Hope
;
Humans
;
Hypoxia-Ischemia, Brain
;
Memory, Short-Term
;
Neurons
;
Parietal Lobe
;
Prefrontal Cortex
;
Rehabilitation
;
Transcranial Direct Current Stimulation

Result Analysis
Print
Save
E-mail