1.Identification of microRNAs targeting vitamin D receptor and their effect on parathyroid hormone secretion in secondary hyperparathyroidism.
Han JIANG ; Pei Ting LI ; Li Dan LIU ; Shan HUANG ; Jun LI ; Wei WU
Journal of Southern Medical University 2022;42(4):509-517
OBJECTIVE:
To identify the miRNAs targeting vitamin D receptor (VDR) gene and their effect on parathyroid hormone (PTH) secretion in secondary hyperparathyroidism.
METHODS:
Primary parathyroid cells with secondary hyperparathyroidism were isolated by collagenase digestion and cultured. The miRNAs targeting VDR were screened by bioinformatics methods and full transcriptome sequencing, and dual-luciferase reporter assay was used to verify the targeting relationship between VDR and the screened miRNA. The effects of overexpression or inhibition of the candidate miRNA on VDR mRNA and protein expressions and PTH secretion were evaluated using qRT-PCR and Western blotting. The expression levels of the candidate miRNAs and VDR mRNA in clinical specimens of parathyroid tissues were verified by qRT-PCR, and the expression of VDR protein was detected by immunohistochemistry.
RESULTS:
We successfully isolated primary parathyroid cells. Dual-luciferase reporter assay verified the targeting relationship of hsa-miR-149-5p, hsa-miR-221-5p, hsa-miR-222-3p, hsa-miR-29a-5p, hsa-miR-301a-5p, hsa-miR-873-5p, hsa-miR-93-3p with VDR, and among them, the overexpression of hsa-miR-149-5p and hsa-miR-301a-5p significantly increased PTH secretion in the parathyroid cells. In patients with secondary hyperparathyroidism, hsa-miR-149-5p was highly expressed in the parathyroid tissues (P=0.046), where the expressions of VDR mRNA (P=0.0267) and protein were both decreased.
CONCLUSION
The two miRNAs, hsa-miR-149-5p and hsa-miR-301a-5p, may promote the secretion of PTH in patients with secondary hyperparathyroidism by down-regulating the expression of VDR gene.
Humans
;
Hyperparathyroidism, Secondary/genetics*
;
MicroRNAs/metabolism*
;
Parathyroid Hormone
;
RNA, Messenger
;
Receptors, Calcitriol/genetics*
2.Expression of fusion protein of parathyroid hormone and transferrin N-terminal half-molecule in Pichia pastoris.
Hao ZHANG ; Xiao-Jing LI ; De-Jie WANG ; Jing CHEN ; Yan-Ying LI ; Yu-Ling LI ; Ming-Shan SHEN ; Hong-Qing FANG ; Hui-Peng CHEN
Chinese Journal of Biotechnology 2005;21(5):804-808
The fused gene (PTH-TFN) of parathyroid hormone (PTH) gene and transferring N-terminal half-molecule (TFN) gene was amplified by multiple PCR and inserted into pPIC9 vector. The recombinant plasmid pPIC9-PTH-TFN was transformed into Pichia pastoris GS115 by PEG. After methanol induction, the target protein was expressed in fermentation supernatant at high level. The fused protein PTH-TFN with purity being higher than 95% was finally obtained after purification through two-step chromatography: SP Sepharose Fast Flow and Phenyl Sepharose Fast Flow. Western blot analysis and adenylate cyclase assay proved that the fused protein exhibited the bioactivity to stimulate cAMP synthesis and the ability to bind Fe3+ in the Fe3+ saturation study as the recombinant TFN did indicating that TFN could be used as the transcellar carrier of PTH.
Artificial Gene Fusion
;
Cloning, Molecular
;
Humans
;
Parathyroid Hormone
;
genetics
;
Pichia
;
genetics
;
metabolism
;
Recombinant Fusion Proteins
;
biosynthesis
;
genetics
;
Transferrin
;
genetics
3.Establishment of HEK293 cell lines stably expressing human parathyroid hormone receptors.
Yue MENG ; Miaomiao XIE ; Zhen LIN ; Liang YUAN ; Wei LI ; Song HAO ; Dehong YANG
Journal of Southern Medical University 2013;33(7):956-961
OBJECTIVETo establish HEK293 cell lines with stable expression of human parathyroid hormone (PTH) receptors.
METHODSThe purified gene fragments of PTH-related peptide receptor (PTHR) and its mutant form (DSEL) were cloned separately into pcDNA3.1(+) vector after digestion with EcoR I and Not I, and the resulted pcDNA3.1(+)-PTHR and pcDNA3.1(+)-DSEL plasmids were verified by restriction enzyme digestion and DNA sequencing. HEK293 cells were transfected with these plasmids and the expression of PTHR and DSEL in the cells were examined by RT-PCR and ELSIA.
RESULTSSequencing and restriction enzyme digestion analysis showed that PTHR and DSEL cDNAs were correctly cloned into pcDNA3.1(+)vector. After a 48-h transfection of HEK293 cells with the recombinant plasmids and G418 selection, the positive cell clones stably expressing the constructs were obtained, which showed expressions of PTHR and DSEL mRNAs detected by RT-PCR. These positive cells showed high levels of PLC and aAMP production in response to PTH stimulation.
CONCLUSIONThe HEK293 cell lines with stable expression of PTH1R or DSEL gene established in this study provide useful cell models for studying the physiological functions of PTH peptides.
Gene Expression ; Genetic Vectors ; HEK293 Cells ; Humans ; Plasmids ; Receptors, Parathyroid Hormone ; genetics ; metabolism ; Sequence Analysis, DNA ; Signal Transduction ; genetics ; Transfection
4.Effects of different human parathyroid hormone 1-34 administration on SaoS-2 cells.
Mei LI ; Xun-wu MENG ; Xue-ying ZHOU ; Xiao-ping XING ; Wei-bo XIA ; Huai-cheng LIU
Acta Academiae Medicinae Sinicae 2004;26(1):30-33
OBJECTIVETo observe the effects of different human parathyroid hormone 1-34 (hPTH1-34) administration on SaoS-2 cells, and explore the mechanism of bone formation improvement.
METHODSEach cycle covered 48 h. SaoS-2 cells were continuously or intermittently stimulated by 50 ng/ml hPTH1-34 for 1, 3, 6, 12, and 24 h in each cycle. Total RNA was extracted by Trizol kit. Alkaline phosphatase (ALP), osteocalcin or bone Gla-containing protein (BGP) and cyclic adenosine monophosphate (cAMP) levels were measured by chemical method, radioimmunoassay and competitive protein binding method, respectively. c-fos gene expression was semi-quantified by reverse transcription polymerase chain reaction (RT-PCR).
RESULTSALP level was time-dependently increased in 1, 3 and 6 h stimulation, especially in 3 and 6 h (compared with control, P < 0.01; P < 0.05 or P < 0.01 compared with continuous stimulation). The cAMP level was time-dependently increased in 3 and 6 h incubation (P < 0.05 compared with control and continuous stimulation). Intermittent hPTH1-34 stimulation had more effects on cAMP level than continous action (P < 0.001). hPTH1-34 intermittent stimulation of 1, 3, and 6 h enhanced c-fos gene expression time-dependently.
CONCLUSIONSIntermittent hPTH1-34 stimulation has a stronger effect on osteoblast than continuous action, especially in 3, 6 h in each cycle intermittent stimulation. The synchronous responses of c-fos, ALP and cAMP to hPTH1-34 suggest that hPTH1-34 affect Saos-2 cells through cAMP dependent protein kinase A (PKA) pathway and c-fos gene paly an important role.
Alkaline Phosphatase ; analysis ; Cells, Cultured ; Humans ; Osteoblasts ; cytology ; Osteocalcin ; analysis ; Osteogenesis ; drug effects ; Osteosarcoma ; genetics ; pathology ; Parathyroid Hormone ; pharmacology ; Parathyroid Hormone-Related Protein ; pharmacology ; Peptide Fragments ; pharmacology ; Proto-Oncogene Proteins c-fos ; biosynthesis ; genetics ; RNA, Messenger ; biosynthesis ; genetics
5.Construction and identification of siRNA recombinant expression vector targeting parathyroid hormone 1 receptor gene and its effect on the cell cycle of INS-1 cells.
Hua-sheng LIANG ; Yao-ming XUE ; Yu-hua ZHONG
Journal of Southern Medical University 2010;30(9):2093-2096
OBJECTIVETo construct the expression vector of siRNA targeting parathyroid hormone 1 receptor (PTH1R) gene and evaluate its effect on the cell cycle of INS-1 cells.
METHODSThe sequences of PTH1R gene was retrieved from Genbank, and 4 pairs of oligonucleotides were synthesized and inserted into pSUPERretro RNAi, which was identified by RT-PCR and sequence analysis. The vectors were then transfected into INS-1 cells, in which the expression of PTH1R was observed by Western blotting to evaluate the transfection efficiency. The cell cycle of INS-1 cells in high glucose medium was detected by flow cytometry.
RESULTSRT-PCR and sequence analysis confirmed the correct construction of the siRNA recombinant expression vector targeting PTH1R gene. The vectors were successfully transfected into INS-1 cells, and the most effective vector was selected by Western blotting. Transfection with the siRNA for PTH1R gene silencing resulted in the inhibition of INS-1 form entering the S phase.
CONCLUSIONThe successful construction of the recombinant PTH1R-siRNA vectors establishes a basis for further study of protective role of the PTH1R gene in INS-1 cells in high glucose medium.
Cell Cycle ; drug effects ; Genetic Vectors ; genetics ; Glucose ; pharmacology ; Humans ; Insulin-Secreting Cells ; cytology ; drug effects ; metabolism ; RNA, Small Interfering ; genetics ; Receptor, Parathyroid Hormone, Type 1 ; genetics ; metabolism
6.Optimising gene therapy of hypoparathyroidism with hematopoietic stem cells.
Yi ZHOU ; Bing-Jie LÜ ; Ping XU ; Chun-Fang SONG
Chinese Medical Journal 2005;118(3):204-209
BACKGROUNDThe treatment of hypoparathyroidism (HPT) is still a difficult clinical problem, which necessitates a new therapy. Gene therapy of HPT has been valuable, but how to improve the gene transfer efficiency and expression stability is a problem. This study was designed to optimize the gene therapy of HPT with hematopoietic stem cells (HSCs) recombined with the parathyroid hormone (PTH) gene.
METHODSThe human PTH gene was amplified by polymerase chain reaction (PCR) from pcDNA3.1-PTH vectors and inserted into murine stem cell virus (MSCV) vectors with double enzyme digestion (EcoRI and XhoI). The recombinant vectors were transfected into PA317 packaging cell lines by the lipofectin method and screened by G418 selective medium. The condensed recombinant retroviruses were extracted and used to infect HSCs, which were injected into mice suffering from HPT. The change of symptoms and serum levels of PTH and calcium in each group of mice were investigated.
RESULTSThe human PTH gene was inserted into MSCV vectors successfully and the titres were up to 2 x 10(7) colony forming unit (CFU)/ml in condensed retroviral solution. The secretion of PTH reached 15 ng.10(-6).cell(-1) per 48 hours. The wild type viruses were not detected via PCR amplification, so they were safe for use. The mice suffering from HPT recovered quickly and the serum levels of calcium and PTH remained normal for about three months after the HSCs recombined with PTH were injected into them. The therapeutic effect of this method was better than simple recombinant retroviruses injection.
CONCLUSIONSThe recombinant retroviral vectors MSCV-PTH and the high-titre condensed retroviral solution recombined with the PTH gene are obtained. The recombinant retroviral solution could infect HSCs at a high rate of efficiency. The infected HSCs could cure HPT in mice. This method has provided theoretical evidence for the clinical gene therapy of HPT.
Animals ; Antigens, CD34 ; analysis ; Female ; Genetic Therapy ; Genetic Vectors ; genetics ; Hematopoietic Stem Cells ; Humans ; Hypoparathyroidism ; blood ; therapy ; Mice ; Parathyroid Hormone ; blood ; genetics ; Retroviridae ; genetics
7.A study on polymerase chain reaction site-directed mutagenesis of prepro-parathyroid hormone in vitro.
Chinese Journal of Surgery 2005;43(5):304-306
OBJECTIVETo study PCR site-directed mutagenesis of prepro-parathyroid hormone gene in vitro and let furin convert it into mature parathyroid hormone in human cells.
METHODPrepro-parathyroid hormone cDNA of SD rat was cloned from its genomic gene and mutated by overlap mutant PCR, introducing furin consensus sequences (Arg-Lys-Lys-Arg). An expression pcDNA3.1/mPTH vector encoding a genetically modified prepro-parathyroid hormone cDNA was generated, and transduced to 293 cells by lipofectin-mediated DNA transfection. Forty-eight and 72 h after the transfection, the culture media were collected for further assay with radioimmunoassay.
RESULTSA fragment of prepro-parathyroid hormone gene was cloned and one site were mutated simultaneouly. After screening and sequencing of pcDNA3.1/mPTH vectors, a correctly mutated vectors was obtained. While measuring parathyroid hormone in the medium of the expressing 293 cells by RIA method, the results of transient expression were 28.34 - 52.64 pg/2.0 x 10(6)/cells/Day, which were much higher than that in control cells.
CONCLUSIONSA correctly mutated prepro-parathyroid hormone cDNA was obtained successfully, transfected, and expressed efficiently in human cells.
Animals ; DNA, Complementary ; genetics ; Genetic Vectors ; Humans ; In Vitro Techniques ; Mutagenesis, Site-Directed ; Parathyroid Hormone ; biosynthesis ; genetics ; Rats ; Rats, Sprague-Dawley ; Transfection
8.Genetic and Clinical Characteristics of Korean Patients with Isolated Hypoparathyroidism: From the Korean Hypopara Registry Study.
So Young PARK ; Young Sil EOM ; Byoungho CHOI ; Hyon Seung YI ; Seung Hee YU ; Kiyoung LEE ; Hyun Seok JIN ; Yoon Sok CHUNG ; Tae Sik JUNG ; Sihoon LEE
Journal of Korean Medical Science 2013;28(10):1489-1495
Isolated hypoparathyroidism (IH) shows heterogeneous phenotypes and can be caused by defects in a variety of genes. The goal of our study was to determine the clinical features and to analyze gene mutations in a large cohort of Korean patients with sporadic or familial IH. We recruited 23 patients. They showed a broad range of onset age and various values of biochemical data. Whole exome sequencing was performed on two affected cases and one unaffected individual in a family. All coding exons and exon-intron borders of GCMB, CASR, and prepro-PTH were sequenced using PCR-amplified DNA. In one family who underwent the whole exome sequencing analysis, approximately 300 single nucleotide changes emerged as candidates for genetic alteration. Among them, we identified a functional mutation in exon 2 of GCMB (C106R) in two affected cases. Besides, heterozygous gain-of-function mutations in the CASR gene were found in other subjects; D410E and P221L. We also found one single nucleotide polymorphism (SNP) in the prepro-PTH gene, five SNPs in the CASR gene, and four SNPs in the GCMB gene. The current study represents a variety of biochemical phenotypes in IH patients with the molecular genetic diagnosis of IH.
Adult
;
Aged
;
Asian Continental Ancestry Group/*genetics
;
Cohort Studies
;
Heterozygote
;
Humans
;
Hypoparathyroidism/diagnosis/*genetics/pathology
;
Middle Aged
;
Nuclear Proteins/*genetics
;
Parathyroid Hormone/*genetics
;
Phenotype
;
Polymorphism, Single Nucleotide
;
Receptors, Calcium-Sensing/*genetics
;
Registries
;
Republic of Korea
;
Transcription Factors/*genetics
;
Young Adult
9.LITTIP/Lgr6/HnRNPK complex regulates cementogenesis via Wnt signaling.
Tiancheng LI ; Han WANG ; Yukun JIANG ; Shuo CHEN ; Danyuan HUANG ; Zuping WU ; Xing YIN ; Chenchen ZHOU ; Yuyu LI ; Shujuan ZOU
International Journal of Oral Science 2023;15(1):33-33
Orthodontically induced tooth root resorption (OIRR) is a serious complication during orthodontic treatment. Stimulating cementum repair is the fundamental approach for the treatment of OIRR. Parathyroid hormone (PTH) might be a potential therapeutic agent for OIRR, but its effects still lack direct evidence, and the underlying mechanisms remain unclear. This study aims to explore the potential involvement of long noncoding RNAs (lncRNAs) in mediating the anabolic effects of intermittent PTH and contributing to cementum repair, as identifying lncRNA-disease associations can provide valuable insights for disease diagnosis and treatment. Here, we showed that intermittent PTH regulates cell proliferation and mineralization in immortalized murine cementoblast OCCM-30 via the regulation of the Wnt pathway. In vivo, daily administration of PTH is sufficient to accelerate root regeneration by locally inhibiting Wnt/β-catenin signaling. Through RNA microarray analysis, lncRNA LITTIP (LGR6 intergenic transcript under intermittent PTH) is identified as a key regulator of cementogenesis under intermittent PTH. Chromatin isolation by RNA purification (ChIRP) and RNA immunoprecipitation (RIP) assays revealed that LITTIP binds to mRNA of leucine-rich repeat-containing G-protein coupled receptor 6 (LGR6) and heterogeneous nuclear ribonucleoprotein K (HnRNPK) protein. Further co-transfection experiments confirmed that LITTIP plays a structural role in the formation of the LITTIP/Lgr6/HnRNPK complex. Moreover, LITTIP is able to promote the expression of LGR6 via the RNA-binding protein HnRNPK. Collectively, our results indicate that the intermittent PTH administration accelerates root regeneration via inhibiting Wnt pathway. The lncRNA LITTIP is identified to negatively regulate cementogenesis, which activates Wnt/β-catenin signaling via high expression of LGR6 promoted by HnRNPK.
Mice
;
Animals
;
Cementogenesis
;
Wnt Signaling Pathway
;
beta Catenin/metabolism*
;
Heterogeneous-Nuclear Ribonucleoprotein K/metabolism*
;
RNA, Long Noncoding/genetics*
;
Parathyroid Hormone
;
Receptors, G-Protein-Coupled/metabolism*
10.A Case Report of Familial Benign Hypocalciuric Hypercalcemia: A Mutation in the Calcium-Sensing Receptor Gene.
Seong Ill WOO ; Hyunju SONG ; Kyung Eun SONG ; Dae Jung KIM ; Kwan Woo LEE ; Se Joong KIM ; Yoon Sok CHUNG
Yonsei Medical Journal 2006;47(2):255-258
Familial benign hypocalciuric hypercalcemia (FBHH) is an autosomal dominant trait with high penetrance, clinically manifestating a relatively benign, lifelong, persistent hypercalcemia and hypocalciuria without hypercalcemic related complications. The calcium-sensing receptor (CaSR) plays an important role in the regulation of PTH secretion and calcium metabolism. Here we present a family with FBHH of an autosomal dominant inheritance. A heterozygous mutation of E297K (GAG -> AAG, exon 4) of CaSR gene was found in 3 family members. To our knowledge, it is the first confirmed case of FBHH with CaSR gene mutation in Korea.
Sequence Analysis, DNA
;
Receptors, Calcium-Sensing/*genetics
;
Pedigree
;
Parathyroid Hormone/analogs & derivatives/genetics/metabolism
;
*Mutation
;
Metabolism, Inborn Errors/*genetics
;
Male
;
Korea
;
Hypercalcemia/*genetics
;
Humans
;
Heterozygote
;
Genes, Dominant
;
Female
;
Family Health
;
Exons
;
DNA Restriction Enzymes/metabolism
;
DNA/metabolism
;
Adult