1.Role of cellular autophagy in cerebral ischemic injury and the regulatory mechanism of traditional Chinese medicine
Panpan ZHOU ; Yinglin CUI ; Wentao ZHANG ; Shurui WANG ; Jiahui CHEN ; Tong YANG
Chinese Journal of Tissue Engineering Research 2025;29(8):1650-1658
BACKGROUND:Studies have shown that ischemia-induced cellular autophagy dysfunction is a key factor in brain injury.Autophagy related genes 6(ATG6),microtubule-associated protein 1 light chain(LC3),p62,and other autophagy key proteins are involved in the processes such as neuronal axonal degeneration,death,and intracellular homeostasis maintenance,playing an important role in the recovery of neural function. OBJECTIVE:To review the research progress in the role of cellular autophagy in cerebral ischemic injury and the regulatory mechanism of traditional Chinese medicine. METHODS:The first author used"ischemic stroke,brain tissue injury,cellular autophagy,signaling pathways,traditional Chinese medicine compounds,terpenoids,alkaloids,flavonoids,saponins,lignans,phthalates"as Chinese and English keywords respectively to search for literature on autophagy,cerebral ischemic injury,and the regulatory mechanisms of traditional Chinese medicine from China National Knowledge Infrastructure(CNKI)and PubMed databases from January 2016 to February 2024.Literature that is not highly relevant,repetitive,or outdated was excluded.A total of 1 746 relevant literature were retrieved,and 92 articles were ultimately included. RESULTS AND CONCLUSION:Numerous studies have confirmed that autophagy plays an important role in cerebral ischemic injury.Moderate autophagy can promote cell survival,while excessive autophagy exacerbates brain injury.Traditional Chinese medicine can regulate the expression of autophagy related proteins,inhibit neuronal necrosis and apoptosis,and exert neuroprotective effects at different stages of cerebral ischemia by regulating signaling pathways such as PI3K/Akt/mTOR,AMPK-mTOR,and mitogen activated protein kinase.
2.Overview of Studies on the Intervention of Chinese Medicinals in Energy Metabolism Reconstruction in Heart Failure
Xinyue NING ; Wenxiao LI ; Zhenyu ZHAO ; Yang GUO ; Panpan ZHOU ; Ludan ZHAO ; Lin LI
Journal of Traditional Chinese Medicine 2025;66(10):1073-1077
Energy metabolism reconstruction is the new target of the treatment of heart failure. By combing the researches of Chinese medicinals for energy metabolism reconstruction of heart failure, it was found that Chinese medicinal compound formula and single Chinese medicinal have a certain role in regulating energy metabolism, mainly through three aspects, including the optimization of substrate utilization, improvement of mitochondrial structure, function, and homeostasis, and improvement of mitochondrial energy transport, so as to make the energy metabolism of the cardiomyocyte adjusted in the direction of beneficial to the organism, increasing the supply of energy, and improving the cardiac function.
3.Life's Essential 8 scores, socioeconomic deprivation, genetic susceptibility, and new-onset chronic kidney diseases.
Panpan HE ; Huan LI ; Mengyi LIU ; Ziliang YE ; Chun ZHOU ; Yanjun ZHANG ; Sisi YANG ; Yuanyuan ZHANG ; Xianhui QIN
Chinese Medical Journal 2025;138(15):1835-1842
BACKGROUND:
The American Heart Association recently released a new cardiovascular health (CVH) metric, Life's Essential 8 (LE8), for health promotion. However, the association between LE8 scores and the risk of chronic kidney disease (CKD) remains uncertain. We aimed to explore the association of LE8 scores with new-onset CKD and examine whether socioeconomic deprivation and genetic risk modify this association.
METHODS:
A total of 286,908 participants from UK Biobank and without prior CKD were included between 2006 and 2010. CVH was categorized using LE8 scores: low (LE8 scores <50), moderate (LE8 scores ≥50 but <80), and high (LE8 scores ≥80). The study outcome was new-onset CKD, ascertained by data linkage with primary care, hospital inpatient, and death data. Cox proportional hazard regression models were used to investigate the association between CVH categories and new-onset CKD.
RESULTS:
During a median follow-up of 12.5 years, 8857 (3.1%) participants developed new-onset CKD. Compared to the low CVH group, the moderate (adjusted hazards ratio [HR], 0.50; 95% confidence interval [CI]: 0.47-0.53) and high CVH (adjusted HR, 0.31; 95% CI: 0.27-0.34) groups had a significantly lower risk of developing new-onset CKD. The population-attributable risk associated with high vs. intermediate or low CVH scores was 40.3%. Participants who were least deprived ( vs. most deprived; adjusted HR, 0.75; 95% CI: 0.71-0.79) and with low genetic risk of CKD ( vs. high genetic risk; adjusted HR, 0.89; 95% CI: 0.85-0.94) had a significantly lower risk of developing new-onset CKD. However, socioeconomic deprivation and genetic risks of CKD did not significantly modify the relationship between LE8 scores and new-onset CKD (both P -interaction >0.05).
CONCLUSION
Achieving a higher LE8 score was associated with a lower risk of developing new-onset CKD, regardless of socioeconomic deprivation and genetic risks of CKD.
Humans
;
Renal Insufficiency, Chronic/epidemiology*
;
Male
;
Female
;
Middle Aged
;
Genetic Predisposition to Disease/genetics*
;
Aged
;
Risk Factors
;
Adult
;
Proportional Hazards Models
;
Socioeconomic Factors
4.Roles of the Keap1/Nrf2 pathway and mitophagy in liver diseases.
Qihui ZHOU ; Panpan CEN ; Zhi CHEN ; Jie JIN
Journal of Zhejiang University. Science. B 2025;26(10):972-994
Nuclear factor erythroid 2-related factor 2 (Nrf2) is an intracellular transcription factor that helps protect against oxidative stress in different types of cells under pathological conditions. Mitochondria are vital organelles that function in diverse metabolic processes in the body, including redox reactions, lipid metabolism, and cell death. Mitophagy, a specific form of autophagy for damaged mitochondria, plays a critical role in the pathophysiology of liver diseases. In this review, we explain in detail the roles of the Nrf2 signaling pathway and mitophagy, and the relationship between them, in various hepatic diseases (nonalcoholic fatty liver disease, viral hepatitis, alcoholic liver disease, drug-induced liver injury, autoimmune hepatitis, hepatic ischemia‒reperfusion injury, and liver cancer). We also offer some potential insights and treatments relevant to clinical applications.
Humans
;
NF-E2-Related Factor 2/metabolism*
;
Mitophagy/physiology*
;
Kelch-Like ECH-Associated Protein 1/metabolism*
;
Signal Transduction
;
Liver Diseases/etiology*
;
Animals
;
Oxidative Stress
;
Mitochondria/metabolism*
;
Non-alcoholic Fatty Liver Disease
;
Liver Neoplasms
5.Role of the Nrf2/HO-1 pathway in cypermethrin-induced oxidative injury of mice hippocampal neurons.
Lihua ZHOU ; Xun ZHANG ; Yingying YU ; Panpan ZHANG
Journal of Southern Medical University 2025;45(5):893-900
OBJECTIVES:
To explore whether the antioxidant axis Nrf2/HO-1 is involved in the regulation of hippocampus injury induced by cypermethrin and its underlying mechanism.
METHODS:
Ten-week-old C57BL/6 mice were randomly divided into control group and cypermethrin exposure groups with low, medium, and high exposure levels. After 21 days of oral gavage of corn oil (control) or cypermethrin, the levels of MDA, T-SOD, GSH-Px and CAT in the hippocampus of the mice were examined to evaluate the oxidative stress levels. HE staining was used to observe morphological changes of the hippocampal neurons. Western blotting, immunofluorescence staining and RT-qPCR were employed to detect the protein expressions and mRNA expression of Nrf2 and HO-1 and HO-1.
RESULTS:
Subacute oral exposure to cypermethrin significantly increased MDA level, decreased the activities of antioxidant enzymes T-SOD, GSH-Px and CAT, and induced neuronal damage in the CA1 and CA3 regions in the hippocampus of C57BL/6 mice. Cypermethrin exposure also caused Nrf2 protein translocation from the cytoplasm to the nucleus, accompanied by upregulated expression levels of the key antioxidant factor Nrf2 and its downstream target kinase HO-1.
CONCLUSIONS
Cypermethrin exposure dose-dependently causes oxidative damage in the hippocampus of C57BL/6 mice, which is regulated by the Nrf2/HO-1 antioxidant pathway.
Animals
;
Pyrethrins/toxicity*
;
NF-E2-Related Factor 2/metabolism*
;
Hippocampus/cytology*
;
Mice, Inbred C57BL
;
Mice
;
Oxidative Stress/drug effects*
;
Neurons/pathology*
;
Heme Oxygenase-1/metabolism*
;
Signal Transduction
;
Membrane Proteins
6.WNK1 Alleviates Chloride Efflux-Induced NLRP3 Inflammasome Activation and Subsequent Neuroinflammation in Early Brain Injury Following Subarachnoid Hemorrhage.
Panpan ZHAO ; Huimiao FENG ; Xinyu ZHOU ; Jingyuan ZHOU ; Fangbo HU ; Taotao HU ; Yong SUN
Neuroscience Bulletin 2025;41(9):1570-1588
The nod-like receptor family pyrin domain containing 3 (NLRP3) inflammasome plays a crucial role in the prognosis of subarachnoid hemorrhage (SAH). WNK1 kinase negatively regulates NLRP3 in various inflammatory conditions, but its role in early brain injury (EBI) after SAH remains unclear. In this study, we used an in vivo SAH model in rats/mice and AAV-WNK1 intraventricular injection to investigate its neuroprotective mechanisms. WNK1 expression was significantly reduced in SAH patient blood and SAH model brain tissue, correlating negatively with microglial activation. AAV-WNK1 alleviated brain edema, neuronal necrosis, behavioral deficits, and inflammation by inhibiting NLRP3 inflammasome activation. In hemin-stimulated BV-2 cells, WNK1 overexpression reduced NLRP3 activation and inflammatory cytokines. Chloride counteracted WNK1's inhibitory effects, and WNK1 suppressed P2X7R-induced NLRP3 activation. Mechanistically, WNK1 functioned via the OXSR1/STK39 pathway. These findings highlight WNK1 as a key regulator of intracellular chloride balance and neuroinflammation, presenting a potential therapeutic target for SAH treatment.
Animals
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Subarachnoid Hemorrhage/complications*
;
Inflammasomes/metabolism*
;
Rats
;
Mice
;
Neuroinflammatory Diseases/metabolism*
;
WNK Lysine-Deficient Protein Kinase 1/genetics*
;
Male
;
Humans
;
Chlorides/metabolism*
;
Mice, Inbred C57BL
;
Rats, Sprague-Dawley
;
Brain Injuries/metabolism*
;
Microglia/metabolism*
;
Protein Serine-Threonine Kinases
7.LBD gene family in Hippophae rhamnoides: identification and expression pattern during flower bud development.
Xinjuan LI ; Panpan YANG ; Tian ZHANG ; Qiandan REN ; Wu ZHOU
Chinese Journal of Biotechnology 2025;41(2):753-770
Lateral organ boundaries (LOB) domain (LBD) genes encode a family of transcription factors ubiquitous in higher plants, playing crucial roles in the growth, development, and stress responses. Hippophae rhamnoides, known for its drought, cold, and saline-alkali tolerance, offers significant economic benefits and ecological values. Utilizing the whole genome data and bioinformatics approaches, this study identified and analyzed the LBD gene family in H. rhamnoides. Additionally, we examined the expression pattern of HrLBD genes by integrating the transcriptome data from male and female flower buds in development. Eleven LBD genes were identified in H. rhamnoides, and these genes were distributed on five chromosomes. The HrLBD proteins showed the lengths ranging from 159 aa to 302 aa, the molecular weights between 18 249.91 Da and 33 202.01 Da, and the subcellular localization in the nucleus or chloroplasts. LBD protein domains and gene structures were highly conserved, featuring similar motifs. The phylogenetic analysis of HrLBD genes and the LBD genes in Arabidopsis thaliana and Hordeum vulgare revealed that HrLBD genes falled into two major categories: Class Ⅰ and Class Ⅱ. The transcriptome data and RT-qPCR showed that HrLBD genes were highly expressed in male flower buds, with up-regulated expression levels throughout bud development, indicating a role in the specific stage of male flower bud development. This study lays a theoretical foundation for exploring the roles of HrLBD genes in the growth, development, and sex differentiation of H. rhamnoides flower buds.
Flowers/genetics*
;
Hippophae/metabolism*
;
Phylogeny
;
Gene Expression Regulation, Plant
;
Plant Proteins/genetics*
;
Transcription Factors/genetics*
;
Multigene Family
;
Genes, Plant
8.Changes in cerebrospinal fluid leukocytes and 24-hour intrathecal IgG synthesis rate in the patients with positive intrathecal IgG synthesis
Shujing LIU ; Panpan FENG ; Wencan JIANG ; Lijuan WANG ; Siwen LI ; Jin ZHOU ; Guojun ZHANG
Chinese Journal of Laboratory Medicine 2024;47(2):142-146
Objective:Laboratory evaluation of the relationship between cerebrospinal fluid and plasma indicators and intrathecal immunoglobulin G(IgG) synthesis in patients with neurological diseases, and establishment of a new diagnostic method for intrathecal IgG synthesis.Methods:This study retrospectively analyzed the content of IgG in cerebrospinal fluid samples and blood albumin in blood samples, and other test results of 410 patients with neurological diseases who visited Beijing Tiantan Hospital from 2019 to 2022. According to the results of oligoclonal bands in cerebrospinal fluid, patients were divided into intrathecal IgG synthesis group and non-intrathecal IgG synthesis group. The Mann Whitney U test was used for inter group comparison, and a bilateral test with P<0.05 indicates a statistically significant difference. Include indicators with differences between groups in logistic regression analysis, construct a predictive model, and compare it with the established quantitative formula IgG index. Results:There were significant differences in 10 indicators, including cerebrospinal fluid leukocyte count and 24-hour intrathecal IgG synthesis rate, between the intrathecal IgG synthesis group and the non-intrathecal IgG synthesis group, with P<0.05. The area under the curve (AUC) of intrathecal IgG synthesis was higher than the IgG index (AUC=0.920, 0.809, Z=31.178, P<0.001), the sensitivity was higher than the IgG index (0.825, 0.618), and the specificity was lower than the IgG index (0.876, 0.908). Conclusion:The combination of 10 indicators such as cerebrospinal fluid white blood cell count and 24-hour intrathecal IgG synthesis rate can improve the diagnostic efficacy and sensitivity of intrathecal IgG synthesis.
9.Effects of quercetin on mitochondrial energy metabolism function after myocardial ischemia
Panpan WANG ; Zan YANG ; Donglan LIU ; Yi ZHOU
China Pharmacy 2024;35(4):401-406
OBJECTIVE To investigate the effects of quercetin on mitochondrial energy metabolism function after myocardial ischemia. METHODS H9c2 cells were divided into blank group, model group, quercetin high-dose, medium-dose and low-dose groups (40, 20, 10 μmol/L), and positive control group (cyclosporine A, 1 μmol/L). Reactive oxygen species (ROS), mitochondrial membrane potential (MMP), openness of mitochondrial permeability transition pore (MPTP), adenosine triphosphate (ATP), malondialdehyde (MDA), lactate dehydrogenase (LDH) and creatine kinase (CK) were observed after cell hypoxia treatment. Rats were randomly assigned into sham operation group, model group, quercetin high-dose, medium-dose and low-dose groups (100, 50, 25 mg/kg), and positive control group (trimetazidine, 6.3 mg/kg), with 8 rats in each group. They were given relevant medicine intragastrically, once a day, for 7 consecutive days. After the last medication, myocardial ischemia model was induced by the ligation of the left anterior descending branch of the coronary artery. The contents of LDH, MDA, creatine kinase isoenzyme-MB (CK-MB), superoxide dismutase (SOD), complex Ⅰ, complex Ⅳ and ATP in serum were all determined. RESULTS Compared with the model group, ROS fluorescence intensity, openness of MPTP, the contents of CK, LDH and MDA were significantly decreased in quercetin low-dose, medium-dose and high-dose groups, and positive control group, while the contents of MMP and ATP were all increased significantly (P<0.01); the contents of CK-MB, LDH and MDA in serum were all decreased significantly in quercetin low-dose, medium-dose and high-dose groups, and positive control group, while the contents of SOD, complex Ⅰ, complex Ⅳ and ATP (except for positive control group) were increased significantly (P< 0.05 or P<0.01). CONCLUSIONS Quercetin can effectively reduce myocardial hypoxic injury, promote endogenous energy production and improve mitochondrial function after myocardial ischemia.
10.Expression of microRNA-6768-5p in lung cancer tissue and its effect on malignant biological behavior of lung cancer cells
Wanli MAO ; Panpan HU ; Jizhong ZOU ; Yaodong ZHOU ; Liangwen LIU
International Journal of Laboratory Medicine 2024;45(4):392-396,403
Objective To investigate the expression of miR-6768-5p in lung cancer tissue and its effect on the proliferation and invasion of lung cancer cells through targeted regulation of carboxypeptidase A4(CPA4).Methods The expression of miR-6768-5p in lung cancer tissues and adjacent tissues was analyzed u-sing the TCGA database.Quantitative real-time PCR(qPCR)was used to detect the expression of miR-6768-5p in human lung cancer cell lines(HCC1588,H1650,H1299,A549,HCC827)and normal alveolar epithelial cells(HPAEpiC cells).Lung cancer cells were transfected with NC mimics and miR-6768-5p mimics,respec-tively,and divided into NC group and miR-6768-5p group.The MTS assay and Matrigel invasion assay were used to detect the cell proliferation and invasion ability of each group,respectively.The putative binding sites of miR-6768-5p and CPA4 were verified using RNAhybrid software and dual-luciferase reporter gene experi-ment.The expression of CPA4 mRNA in each group of cells was detected by qPCR.The expression of AKT/c-MYC signaling pathway proteins in the cells of each group was analyzed by Western blot.Results Com-pared with the adjacent tissues,the relative expression level of miR-6768-5p in lung cancer tissues was signifi-cantly decreased,and the difference was statistically significant(P<0.05).Compared with HPAEpiC cells,the relative expression level of miR-6768-5p was significantly decreased in lung cancer cell lines,and the differ-ence was statistically significant(P<0.05).Compared with the NC group,the cell proliferation rate of miR-6768-5p group was significantly decreased(P<0.05).The number of invasive cells in NC group and miR-6768-5p group was(131.30±12.55)and(37.45±7.77),respectively,and the number of invasive cells in miR-6768-5p group was significantly lower than that in NC group(P<0.05).The relative expression level of CPA4 mRNA in H1299 cells of miR-6768-5p group was significantly lower than that in NC group(t=4.93,P<0.05).Compared with the NC group,the expressions of AKT/c-myC signaling pathway proteins p-AKT,p-mTORC1,XIAP,MDM2 and C-myC proteins in miR-6768-5p group were significantly decreased.Conclusion The expression of miR-6768-5p is decreased in lung cancer tissues,and miR-6768-5p may inhibit the activation of AKT/c-MYC signaling pathway by targeting CPA4,and reduce the proliferation and invasion ability of lung cancer H1299 cells.

Result Analysis
Print
Save
E-mail