1.Anti-inflammatory Effect of Mangosteen (Garcinia mangostana L.) Peel Extract and its Compounds in LPS-induced RAW264.7 Cells.
Wahyu WIDOWATI ; Lusiana DARSONO ; Jo SUHERMAN ; Nurul FAUZIAH ; Maesaroh MAESAROH ; Pande Putu ERAWIJANTARI
Natural Product Sciences 2016;22(3):147-153
Inflammation plays an important role in host defense against external stimuli such as infection by pathogen, endotoxin or chemical exposure by the production of the inflammatory mediators that produced by macrophage. Anti-inflammatory factor is important to treat the dangers of chronic inflammation associated with chronic disease. This research aims to analyze the anti-inflammatory effects of Garcinia mangostana L. peel extract (GMPE), α-mangostin, and γ-mangostin in LPS-induced murine macrophage cell line (RAW 264.7) by inhibiting the production of inflammatory mediators. The cytotoxic assay of G. mangostana L. extract, α-mangostin, and γ-mangostin were performed by MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) to determine the safe and non-toxic concentration in RAW 264.7 for the further assay. The concentration of inflammatory mediators (COX-2, IL-6, and IL-1β) were measured by the ELISA-based assay and NO by the nitrate/nitrite colorimetric assay in treated LPS-induced RAW 264.7 cells. The inhibitory activity was determined by the reducing concentration of inflammatory mediators in treated LPS-induced RAW 264.7 over the untreated cells. This research revealed that GMPE, α-mangostin, and γ-mangostin possess the anti-inflammatory effect by reducing COX-2, IL-6, IL-1β, and NO production in LPS-induces RAW 264.7 cells.
Cell Line
;
Chronic Disease
;
Fibrinogen
;
Garcinia mangostana*
;
Inflammation
;
Interleukin-6
;
Macrophages
;
RAW 264.7 Cells
2.Tea Flavonoids Induced Differentiation of Peripheral Blood-derived Mononuclear Cells into Peripheral Blood-derived Endothelial Progenitor Cells and Suppressed Intracellular Reactive Oxygen Species Level of Peripheral Blood-derived Endothelial Progenitor C.
Wahyu WIDOWATI ; Laura WIJAYA ; Dian Ratih LAKSMITAWATI ; Rahma Micho WIDYANTO ; Pande Putu ERAWIJANTARI ; Nurul FAUZIAH ; Indra BACHTIAR ; Ferry SANDRA
Natural Product Sciences 2016;22(2):87-92
Endothelial dysfunction in atherosclerosis is associated with increasing oxidative stress that could be reversed by antioxidant. Therefore epigallocatechin gallate (EGCG), epicatechin gallate (ECG), epigallocatechin (EGC) and catechin (C) of tea flavonoids were investigated for their roles in regenerating endothelial cell. Peripheral blood mononuclear cells (PB-MNCs) were isolated, plated and cultured in medium with/without treatment of EGCG, ECG, EGC and C. Results showed that among all EGCG, ECG, EGC and C concentrations tested, 12.5 µmol/L was not cytotoxic for peripheral blood-derived endothelial progenitor cells (PB-EPCs). Treatment of EGCG, ECG, EGC or C increased the percentages of CD34, CD133, VEGFR-2 expressions and suppressed hydrogen peroxide-induced percentages of reactive oxygen species (ROS) level in PB-EPCs. Taken together, our current results showed that EGCG, ECG, EGC or C of tea flavonoids could induce differentiation of PB-MNCs into PB-EPCs as well as protect PB-EPCs from oxidative damage by suppresing the intracellular ROS levels.
Apoptosis
;
Atherosclerosis
;
Catechin
;
Electrocardiography
;
Endothelial Cells
;
Endothelial Progenitor Cells*
;
Flavonoids*
;
Hydrogen
;
Oxidative Stress
;
Reactive Oxygen Species*
;
Tea*
;
Vascular Endothelial Growth Factor Receptor-2