1.Lipid-lowering activity of Panax notoginseng flowers and rhizomes on hyperlipidemia rats based on chemical composition similarity.
Meng YE ; Jin-Wen MA ; Hai-Yue ZHONG ; Yu-Ling XU
China Journal of Chinese Materia Medica 2025;50(3):776-786
Based on the similarity of chemical constituents between Panax notoginseng flowers and rhizomes, this study investigated their lipid-lowering effects and impacts on the intestinal flora of rats. The main components of P. notoginseng flowers and rhizomes were detected by ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry(UHPLC-Q-TOF-MS) to compare their chemical similarities. A hyperlipidemia rat model was induced using a high-fat diet. After successful modeling, the rats were divided into the blank control group, blank administration group(0.090 g·kg~(-1)), model group, low-(0.045 g·kg~(-1)), medium-(0.090 g·kg~(-1)), high-dose(0.180 g·kg~(-1)) P. notoginseng flower group, P. notoginseng rhizome group(0.270 g·kg~(-1)), and simvastatin group(0.900 mg·kg~(-1)). After modeling, the rats were given intragastric administration for 3 weeks, once daily, while their body weight was recorded regularly. Before the last administration, fresh feces were collected for analysis of changes in intestinal flora using 16S rDNA high-throughput sequencing technology. One hour after the last administration, the rats were anesthetized with 1% pentobarbital sodium, and blood was collected from the abdominal aorta. Serum biochemical indexes were detected using an automatic biochemical analyzer. Organs(heart, liver, spleen, lung, and kidney) were harvested, and organ index were calculated. Liver tissue pathology was assessed through HE staining and oil red O staining. The results indicated that there were 33 identical chemical constituents in P. notoginseng flowers and rhizomes, accounting for 75.00% of the total constituents. After treatment, high-dose P. notoginseng flower group and P. notoginseng rhizome group exhibited similar effects on body weight, serum biochemical indexes, and liver histopathological conditions. Compared with model control group, the abundance of Firmicutes and Actinobacteria increased in high-dose P. notoginseng flower and rhizome groups, while the abundance of Bacteroidetes and Thermodesulfobacteria decreased. Cluster analysis showed no significant difference between the two groups. Both P. notoginseng flowers and rhizomes possess similar chemical components and lipid-lowering effects, and they can regulate the intestinal flora imbalance caused by hyperlipidemia, indicating their potential for use in hyperlipidemia treatment.
Animals
;
Hyperlipidemias/microbiology*
;
Panax notoginseng/chemistry*
;
Rats
;
Rhizome/chemistry*
;
Male
;
Flowers/chemistry*
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats, Sprague-Dawley
;
Hypolipidemic Agents/administration & dosage*
;
Gastrointestinal Microbiome/drug effects*
;
Humans
;
Liver/drug effects*
2.Inhibition of ISO-induced hypertrophy and damage in H9c2 cells by total saponins from Ginseng Radix et Rhizoma and Notoginseng Radix et Rhizoma via promoting autophagy.
Cheng-Zhi XIE ; Ying ZHANG ; Chang FU ; Xiao-Shan CUI ; Rui-Na HAO ; Jian-Xun REN
China Journal of Chinese Materia Medica 2025;50(7):1841-1849
This paper primarily investigated the protective effects and potential mechanisms of total saponins from Ginseng Radix et Rhizoma and Notoginseng Radix et Rhizoma in alleviating isoprenaline(ISO)-induced hypertrophy and damage in H9c2 cardiomyocytes. Initially, H9c2 cardiomyocytes were used as the research subject to analyze the effects of ISO at different concentrations on cell hypertrophy and damage. On this basis, the H9c2 cardiomyocytes were divided into blank, model, and high-dose(200 μg·mL~(-1)), medium-dose(100 μg·mL~(-1)), and low-dose(50 μg·mL~(-1)) groups of total saponins from Ginseng Radix et Rhizoma and Notoginseng Radix et Rhizoma. Cell hypertrophy and damage models were induced by treating cells with 400 μmol·L~(-1) ISO for 24 hours. The Incucyte live-cell analysis system was utilized to observe the status, size changes, and confluence of the cells in each group. Cell viability was detected by using the CCK-8 assay. Western blot analysis was employed to detect the expression of Ras-associated protein 7A(RAB7A), sequestosome 1(SQSTM1/p62), autophagy-related protein Beclin1, and microtubule-associated protein 1 light chain 3(LC3). Immunofluorescence was used to detect the expression level of the autophagy marker Beclin1 in H9c2 cells. The results demonstrated that compared with the blank group, the model group showed a significant reduction in cell viability(P<0.01) and a marked increase in cell hypertrophy, with an average cell length growth of 13.53%. Compared with the model group, the high-dose, medium-dose, and low-dose groups of total saponins from Ginseng Radix et Rhizoma and Notoginseng Radix et Rhizoma exhibited reduced hypertrophy, with respective growths of 6.89%, 8.30%, and 8.49% and a significant decrease in growth rates(P<0.01). Cell viability in the high-dose of total saponins from Ginseng Radix et Rhizoma and Notoginseng Radix et Rhizoma was also significantly increased(P<0.01). Western blot and immunofluorescence results indicated that compared with the blank group, the model group showed changes in Beclin1, RAB7A, and p62 expression, as well as the LC3Ⅱ/LC3Ⅰ ratio, although most changes were not statistically significant. In the groups treated with total saponins from Ginseng Radix et Rhizoma and Notoginseng Radix et Rhizoma, the expression of autophagy-related proteins Beclin1 and RAB7A and the LC3Ⅱ/LC3Ⅰ ratio were significantly increased(P<0.05), while p62 expression significantly decreased(P<0.05). These findings collectively suggested that pretreatment of cells with total saponins from Ginseng Radix et Rhizoma and Notoginseng Radix et Rhizoma significantly enhanced autophagy activity in cells. In summary, total saponins from Ginseng Radix et Rhizoma and Notoginseng Radix et Rhizoma inhibit ISO-induced hypertrophy and damage in H9c2 cells by promoting autophagy, demonstrating potential cardioprotective effects and providing new insights and scientific evidence for their preventive and therapeutic use in cardiovascular diseases.
Autophagy/drug effects*
;
Saponins/pharmacology*
;
Panax notoginseng/chemistry*
;
Panax/chemistry*
;
Animals
;
Rats
;
Cell Line
;
Drugs, Chinese Herbal/pharmacology*
;
Rhizome/chemistry*
;
Isoproterenol/adverse effects*
;
Myocytes, Cardiac/cytology*
;
Hypertrophy/drug therapy*
3.Mechanism of action of ginsenoside Rg_2 on diabetic retinopathy and angiogenesis based on YAP/TLRs pathway.
Zhuo-Rong LIU ; Yong-Li SONG ; Shang-Qiu NING ; Yue-Ying YUAN ; Yu-Ting ZHANG ; Gai-Mei HAO ; Jing HAN
China Journal of Chinese Materia Medica 2025;50(6):1659-1669
Ginsenoside Rg_2(GRg2) is a triterpenoid compound found in Panax notoginseng. This study explored its effects and mechanisms on diabetic retinopathy and angiogenesis. The study employed endothelial cell models induced by glucose or vascular endothelial growth factor(VEGF), the chorioallantoic membrane(CAM) model, the oxygen-induced retinopathy(OIR) mouse model, and the db/db mouse model to evaluate the therapeutic effects of GRg2 on diabetic retinopathy and angiogenesis. Transwell assays and endothelial tube formation experiments were conducted to assess cell migration and tube formation, while vascular area measurements were applied to detect angiogenesis. The impact of GRg2 on the retinal structure and function of db/db mice was evaluated through retinal thickness and electroretinogram(ERG) analyses. The study investigated the mechanisms of GRg2 by analyzing the activation of Yes-associated protein(YAP) and Toll-like receptors(TLRs) pathways. The results indicated that GRg2 significantly reduced cell migration numbers and tube formation lengths in vitro. In the CAM model, GRg2 exhibited a dose-dependent decrease in the vascular area ratio. In the OIR model, GRg2 notably decreased the avascular and neovascular areas, ameliorating retinal structural disarray. In the db/db mouse model, GRg2 increased the total retinal thickness and enhanced the amplitudes of the a-wave, b-wave, and oscillatory potentials(OPs) in the ERG, improving retinal structural disarray. Transcriptomic analysis revealed that the TLR signaling pathway was significantly down-regulated following YAP knockdown, with PCR results consistent with the transcriptome sequencing findings. Concurrently, GRg2 downregulated the expression of Toll-like receptor 4(TLR4), TNF receptor-associated factor 6(TRAF6), and nuclear factor-kappaB(NF-κB) proteins in high-glucose-induced endothelial cells. Collectively, GRg2 inhibits cell migration and tube formation and significantly reduces angiogenesis in CAM and OIR models, improving retinal structure and function in db/db mice, with its pharmacological mechanism likely involving the down-regulation of YAP expression.
Animals
;
Ginsenosides/pharmacology*
;
Diabetic Retinopathy/physiopathology*
;
Mice
;
YAP-Signaling Proteins
;
Humans
;
Male
;
Signal Transduction/drug effects*
;
Cell Movement/drug effects*
;
Adaptor Proteins, Signal Transducing/genetics*
;
Mice, Inbred C57BL
;
Neovascularization, Pathologic/metabolism*
;
Drugs, Chinese Herbal/administration & dosage*
;
Panax notoginseng/chemistry*
;
Endothelial Cells/metabolism*
;
Transcription Factors/genetics*
;
Angiogenesis
4.Exploring in vivo existence forms of Notoginseng Radix et Rhizoma in rats.
Meng-Ge FENG ; Lin-Han XIANG ; Jing ZHANG ; Wen-Hui ZHAO ; Yang LI ; Li-Li LI ; Guang-Xue LIU ; Shao-Qing CAI ; Feng XU
China Journal of Chinese Materia Medica 2025;50(9):2539-2562
The study aims to elucidate the existence forms(original constituents and metabolites) of Notoginseng Radix et Rhizoma in rats and reveal its metabolic pathways. After Notoginseng Radix et Rhizoma was administered orally once a day for seven consecutive days to rats, all urine and feces samples were collected for seven days, while the blood samples were obtained 6 h after the last administration. Using the ultra high performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry(UHPLC-Q-TOF-MS/MS) technique, this study identified 6, 73, and 156 existence forms of Notoginseng Radix et Rhizoma in the rat plasma, urine, and feces samples, respectively. Among them, 101 compounds were identified as new existence forms, and 13 original constituents were identified by comparing with reference compounds. The metabolic reactions of constituents from Notoginseng Radix et Rhizoma were mainly deglycosylation, dehydration, hydroxylation, hydrogenation, dehydrogenation, acetylation, and amino acid conjugation. Furthermore, the possible in vivo metabolic pathways of protopanaxatriol(PPT) in rats were proposed. Through comprehensive analysis of the liquid chromatography-mass spectrometry(LC-MS) data, isomeric compounds were discriminated, and the planar chemical structures of 32 metabolites were clearly identified. According to the literature, 48 original constituents possess antitumor and cardiovascular protective bioactivities. Additionally, 32 metabolites were predicted to have similar bioactivities by SuperPred. This research lays the foundation for further exploring the in vivo effective forms of Notoginseng Radix et Rhizoma.
Animals
;
Rats
;
Drugs, Chinese Herbal/pharmacokinetics*
;
Rhizome/metabolism*
;
Male
;
Rats, Sprague-Dawley
;
Chromatography, High Pressure Liquid
;
Panax notoginseng/chemistry*
;
Tandem Mass Spectrometry
;
Feces/chemistry*
5.Stem-leaf saponins of Panax notoginseng attenuate experimental Parkinson's disease progression in mice by inhibiting microglia-mediated neuroinflammation via P2Y2R/PI3K/AKT/NFκB signaling pathway.
Hui WU ; Chenyang NI ; Yu ZHANG ; Yingying SONG ; Longchan LIU ; Fei HUANG ; Hailian SHI ; Zhengtao WANG ; Xiaojun WU
Chinese Journal of Natural Medicines (English Ed.) 2025;23(1):43-53
Stem-leaf saponins from Panax notoginseng (SLSP) comprise numerous PPD-type saponins with diverse pharmacological properties; however, their role in Parkinson's disease (PD), characterized by microglia-mediated neuroinflammation, remains unclear. This study evaluated the effects of SLSP on suppressing microglia-driven neuroinflammation in experimental PD models, including the 1-methyl-4-phenylpyridinium (MPTP)-induced mouse model and lipopolysaccharide (LPS)-stimulated BV-2 microglia. Our findings revealed that SLSP mitigated behavioral impairments and excessive microglial activation in models of PD, including MPTP-treated mice. Additionally, SLSP inhibited the upregulation of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX2) and attenuated the phosphorylation of PI3K, protein kinase B (AKT), nuclear factor-κB (NFκB), and inhibitor of NFκB protein α (IκBα) both in vivo and in vitro. Moreover, SLSP suppressed the production of inflammatory markers such as interleukin (IL)-1β, IL-6, and tumor necrosis factor alpha (TNF-α) in LPS-stimulated BV-2 cells. Notably, the P2Y2R agonist partially reversed the inhibitory effects of SLSP in LPS-treated BV-2 cells. These results suggest that SLSP inhibit microglia-mediated neuroinflammation in experimental PD models, likely through the P2Y2R/PI3K/AKT/NFκB signaling pathway. These novel findings indicate that SLSP may offer therapeutic potential for PD by attenuating microglia-mediated neuroinflammation.
Animals
;
Panax notoginseng/chemistry*
;
Saponins/pharmacology*
;
Microglia/immunology*
;
Mice
;
NF-kappa B/immunology*
;
Signal Transduction/drug effects*
;
Proto-Oncogene Proteins c-akt/immunology*
;
Phosphatidylinositol 3-Kinases/genetics*
;
Male
;
Parkinson Disease/immunology*
;
Mice, Inbred C57BL
;
Disease Models, Animal
;
Plant Leaves/chemistry*
;
Neuroinflammatory Diseases/drug therapy*
;
Humans
6.Astragali Radix-Notoginseng Radix et Rhizoma medicine pair prevents cardiac remodeling by improving mitochondrial dynamic balance.
Pingping LIN ; Hong CHEN ; Zekun CUI ; Boyang YU ; Junping KOU ; Fang LI
Chinese Journal of Natural Medicines (English Ed.) 2025;23(1):54-63
Astragali Radix (AR) and Notoginseng Radix et Rhizoma (NR) are frequently employed in cardiovascular disease treatment. However, the efficacy of the AR-NR medicine pair (AN) in improving cardiac remodeling and its underlying mechanism remains unclear. This study aimed to evaluate AN's cardioprotective effect and potential mechanism on cardiac remodeling using transverse aortic constriction (TAC) in mice and angiotensin II (Ang II)-induced neonatal rat cardiomyocytes (NRCMs) and fibroblasts in vitro. High-performance liquid chromatography-quadrupole-time of flight tandem mass spectrometry (HPLC-Q-TOF-MS/MS) characterized 23 main components of AN. AN significantly improved cardiac function in the TAC-induced mice. Furthermore, AN considerably reduced the serum levels of N-terminal pro-B-type natriuretic peptide (NT-proBNP), cardiac troponin T (CTn-T), and interleukin-6 (IL-6) and mitigated inflammatory cell infiltration. Post-AN treatment, TAC-induced heart size approached normal. AN decreased cardiomyocyte cross-sectional area and attenuated the upregulation of cardiac hypertrophy marker genes (ANP, BNP, and MYH7) in vivo and in vitro. Concurrently, AN alleviated collagen deposition in TAC-induced mice. AN also reduced the expression of fibrosis-related indicators (COL1A1 and COL3A1) and inhibited the activation of the transforming growth factor-β1 (TGF-β1)/mothers against decapentaplegic homolog 3 (Smad3) pathway. Thus, AN improved TAC-induced cardiac remodeling. Moreover, AN downregulated p-dynamin-related protein (Drp1) (Ser616) expression and upregulated mitogen 2 (MFN-2) and optic atrophy 1 (OPA1) expression in vivo and in vitro, thereby restoring mitochondrial fusion and fission balance. In conclusion, AN improves cardiac remodeling by regulating mitochondrial dynamic balance, providing experimental data for the rational application of Chinese medicine prescriptions with AN as the main component in clinical practice.
Animals
;
Drugs, Chinese Herbal/pharmacology*
;
Myocytes, Cardiac/metabolism*
;
Mice
;
Rats
;
Male
;
Mitochondrial Dynamics/drug effects*
;
Ventricular Remodeling/drug effects*
;
Astragalus Plant/chemistry*
;
Mice, Inbred C57BL
;
Rhizome/chemistry*
;
Panax notoginseng/chemistry*
;
Rats, Sprague-Dawley
;
Natriuretic Peptide, Brain/genetics*
;
Humans
;
Angiotensin II
;
Astragalus propinquus
7.Design and synthesis of novel saponin-triazole derivatives in the regulation of adipogenesis.
Yongsheng FANG ; Zhiyun ZHU ; Chun XIE ; Dazhen XIA ; Huimin ZHAO ; Zihui WANG ; Qian LU ; Caimei ZHANG ; Wenyong XIONG ; Xiaodong YANG
Chinese Journal of Natural Medicines (English Ed.) 2025;23(8):920-931
Saponins associated with Panax notoginseng (P. notoginseng) demonstrate significant therapeutic efficacy across multiple diseases. However, certain high-yield saponins face limited clinical applications due to their reduced pharmacological efficacy. This study synthesized and evaluated 36 saponin-1,2,3-triazole derivatives of ginsenosides Rg1/Rb1 and notoginsenoside R1 for anti-adipogenesis activity in vitro. The research revealed that the ginsenosides Rg1-1,2,3-triazole derivative a17 demonstrates superior adipogenesis inhibitory effects. Structure-activity relationships (SARs) analysis indicates that incorporating an amidyl-substituted 1,2,3-triazole into the saponin side chain via Click reaction enhances anti-adipogenesis activity. Additionally, several other derivatives exhibit general adipogenesis inhibition. Compound a17 demonstrated enhanced potency compared to the parent ginsenoside Rg1. Mechanistic investigations revealed that a17 exhibits dose-dependent inhibition of adipogenesis in vitro, accompanied by decreased expression of preadipocytes. Peroxisome proliferator-activated receptor γ (PPARγ), fatty acid synthase (FAS), and fatty acid binding protein 4 (FABP4) adipogenesis regulators. These findings establish the ginsenoside Rg1-1,2,3-triazole derivative a17 as a promising adipocyte differentiation inhibitor and potential therapeutic agent for obesity and associated metabolic disorders. This research provides a foundation for developing effective therapeutic approaches for various metabolic syndromes.
Adipogenesis/drug effects*
;
Triazoles/chemical synthesis*
;
Ginsenosides/chemical synthesis*
;
Saponins/chemical synthesis*
;
Animals
;
Mice
;
Structure-Activity Relationship
;
PPAR gamma/genetics*
;
3T3-L1 Cells
;
Adipocytes/metabolism*
;
Panax notoginseng/chemistry*
;
Drug Design
;
Molecular Structure
;
Humans
;
Cell Differentiation/drug effects*
;
Fatty Acid-Binding Proteins/genetics*
8.Panax notoginseng saponins improve monocrotaline-induced pulmonary arterial hypertension in rats by inhibiting ADAM10/Notch3 signaling pathway.
Sai ZHANG ; Yun-Na TIAN ; Zheng-Yang SONG ; Xiao-Ting WANG ; Xin-Yu WANG ; Jun-Peng XU ; Lin-Bo YUAN ; Wan-Tie WANG
Acta Physiologica Sinica 2023;75(4):503-511
In this study, we investigated the effects of Panax notoginseng saponins (PNS) on pulmonary vascular remodeling and ADAM10/Notch3 pathway in pulmonary arterial hypertension (PAH). PAH rat model was established, and male Sprague Dawley (SD) rats were randomly divided into control group, monocrotaline (MCT) group and MCT+PNS group, with 10 rats in each group. Rats in the control group were intraperitoneally injected with equal volume of normal saline. Rats in the MCT group was injected intraperitoneally with 60 mg/kg MCT on the first day, and then with the same volume of normal saline every day. Rats in the MCT+PNS group was injected intraperitoneally with 60 mg/kg MCT on the first day, and then with 50 mg/kg PNS every day. The modeling time of each group lasted for 21 days. After the model was established, the mean pulmonary artery pressure (mPAP) was measured by right heart catheterization technique, the right ventricular hypertrophy index (RVHI) was calculated, the microscopic morphology and changes of pulmonary vascular wall were observed by HE and Masson staining, and the expressions of ADAM10, Notch3, Hes-1, P27, PCNA, Caspase-3 proteins and mRNA in pulmonary vascular tissue of rats were detected by Western blot and qPCR. The expression and localization of Notch3 and α-SMA were detected by immunofluorescence staining. The protein expression of ADAM10 was detected by immunohistochemical staining. The results showed that compared with the control group, mPAP, RVHI, pulmonary vessels and collagen fibers in the MCT group were significantly increased, the expressions of ADAM10, Notch3, Hes-1, and PCNA protein and mRNA were significantly increased, while the expressions of P27 and Caspase-3 protein and mRNA were decreased significantly. Compared with the MCT group, mPAP and RVHI were significantly decreased, pulmonary vessels were significantly improved and collagen fibers were significantly reduced, the expressions of protein and mRNA of ADAM10, Notch3, Hes-1, and PCNA were decreased in MCT+PNS group, but the expressions of protein and mRNA of P27 and Caspase-3 were increased slightly. The results of immunofluorescence showed that Notch3 and α-SMA staining could overlap, which proved that Notch3 was expressed in smooth muscle cells. The expression of Notch3 in the MCT group was increased significantly compared with that in the control group, while PNS intervention decreased the expression of Notch3. Immunohistochemical staining showed that compared with the control group, the amount of ADAM10 in the MCT group was increased significantly, and the expression of ADAM10 in the MCT+PNS group was decreased compared with the MCT group. These results indicate that PNS can improve the PAH induced by MCT in rats by inhibiting ADAM10/Notch3 signaling pathway.
Animals
;
Male
;
Rats
;
Caspase 3/metabolism*
;
Collagen
;
Disease Models, Animal
;
Hypertension, Pulmonary/drug therapy*
;
Monocrotaline/adverse effects*
;
Panax notoginseng/chemistry*
;
Proliferating Cell Nuclear Antigen/pharmacology*
;
Pulmonary Arterial Hypertension
;
Pulmonary Artery/metabolism*
;
Rats, Sprague-Dawley
;
Receptor, Notch3/genetics*
;
RNA, Messenger
;
Saline Solution
;
Signal Transduction
;
Saponins/pharmacology*
9.Effects of propiconazole on physiological and biochemical properties of Panax notoginseng and dietary risk assessment.
Zi-Xiu ZHENG ; Li-Sha QIU ; Kai ZHENG ; Lan-Ping GUO ; Xiu-Ming CUI ; Hong-Juan NIAN ; Ying-Cai LI ; Shao-Jun HUANG ; Ye YANG
China Journal of Chinese Materia Medica 2023;48(5):1203-1211
To study the residue and dietary risk of propiconazole in Panax notoginseng and the effects on physiological and bioche-mical properties of P. notoginseng, we conducted foliar spraying of propiconazole on P. notoginseng in pot experiments. The physiolo-gical and biochemical properties studied included leaf damage, osmoregulatory substance content, antioxidant enzyme system, non-enzymatic system, and saponin content in the main root. The results showed that at the same application concentration, the residual amount of propiconazole in each part of P. notoginseng increased with the increase in the times of application and decreased with the extension of harvest interval. After one-time application of propiconazole according to the recommended dose(132 g·hm~(-2)) for P. ginseng, the half-life was 11.37-13.67 days. After 1-2 times of application in P. notoginseng, propiconazole had a low risk of dietary intake and safety threat to the population. The propiconazole treatment at the recommended concentration and above significantly increased the malondialdehyde(MDA) content, relative conductivity, and osmoregulatory substances and caused the accumulation of reactive oxygen species in P. notoginseng leaves. The propiconazole treatment at half(66 g·hm~(-2)) of the recommended dose for P. ginseng significantly increased the activities of superoxide dismutase(SOD), peroxidase(POD), and catalase(CAT) in P. notoginseng leaves. The propiconazole treatment at 132 g·hm~(-2) above inhibited the activities of glutathione reductase(GR) and glutathione S-transferase(GST), thereby reducing glutathione(GSH) content. Proconazole treatment changed the proportion of 5 main saponins in the main root of P. notoginseng. The treatment with 66 g·hm~(-2) propiconazole promoted the accumulation of saponins, while that with 132 g·hm~(-2) and above propiconazole significantly inhibited the accumulation of saponins. In summary, using propiconazole at 132 g·hm~(-2) to prevent and treat P. notoginseng diseases will cause stress on P. notoginseng, while propiconazole treatment at 66 g·hm~(-2) will not cause stress on P. notoginseng but promote the accumulation of saponins. The effect of propiconazole on P. notoginseng diseases remains to be studied.
Panax notoginseng/chemistry*
;
Panax
;
Antioxidants/pharmacology*
;
Saponins/pharmacology*
;
Glutathione
;
Risk Assessment
10.Research summary of chemical constituents and pharmacological effects of Panax notoginseng and predictive analysis on its Q-markers.
Li-Ping SHI ; Guo-Zhuang ZHANG ; Cong-Sheng LIU ; Zhi-Xin HUANG ; Yu-Qing ZHENG ; Lin-Lin DONG
China Journal of Chinese Materia Medica 2023;48(8):2059-2067
Panax notoginseng contains triterpene saponins, flavonoids, amino acids, polysaccharides, volatile oil and other active components, which have the effects of promoting blood circulation, stopping bleeding, removing blood stasis, etc. This study summarized the herbal research, chemical constituents and main pharmacological activities of P. notoginseng, and based on the theory of Q-markers of traditional Chinese medicine, predicted and analyzed the Q-markers of P. notoginseng from the aspects of plant kinship, efficacy, drug properties, measurability of chemical components, etc. It was found that ginsenosides Rg_1, Re, and Rb_1 with specific content ratio, ginsenosides Rb_2, Rb_3, Rc, Rd, Rh_2, and Rg_3, notoginseng R_1, dencichine and quercetin could be used as potential Q-markers of P. notoginseng, which facilitated the formulation of quality standards reflecting the efficacy of P. notoginseng.
Panax notoginseng/chemistry*
;
Ginsenosides/analysis*
;
Saponins/analysis*
;
Medicine, Chinese Traditional
;
Drugs, Chinese Herbal/pharmacology*
;
Panax/chemistry*

Result Analysis
Print
Save
E-mail