2.Optimization of UDP-glucose supply module and production of ginsenoside F1 in Saccharomyces cerevisiae.
Jin-He WANG ; Dong WANG ; Wei-Xian LI ; Ying HUANG ; Zhu-Bo DAI ; Xue-Li ZHANG
China Journal of Chinese Materia Medica 2019;44(21):4596-4604
Ginsenoside F1 is a rare ginsenoside in medicinal plants such as Panax ginseng,P. notogingseng and P. quinquefolius. It has strong pharmacological activities of anti-tumor,anti-oxidation and anti-aging. In order to directly produce ginsenoside F1 by using inexpensive raw materials such as glucose,we integrated the codon-optimized P.ginseng dammarenediol-Ⅱ synthase(Syn Pg DDS),P.ginseng protopanaxadiol synthase(Syn Pg PPDS),P. ginseng protopanaxatriol synthase(Syn Pg PPTS) genes and Arabidopsis thaliana cytochrome P450 reductase(At CPR1) gene into triterpene chassis strain BY-T3. The transformant BY-PPT can produce protopanaxatriol. Then we integrated the Sacchromyces cerevisiae phosphoglucomutase 1(PGM1),phosphoglucomutase 2(PGM2) and UDP-glucose pyrophosphorylase 1(UGP1) genes into chassis strain BY-PPT. The UDP-glucose supply module increased UDP-glucose production by 8. 65 times and eventually reached to 44. 30 mg·L-1 while confirmed in the transformant BY-PPT-GM. Next,we integrated the UDPglucosyltransferase Pg3-29 gene which can catalyze protopanaxatriol to produce ginsenoside F1 into chassis strain BY-PPT-GM. The transformant BY-F1 produced a small amount of ginsenoside F1 which was measured as 0. 5 mg·L-1. After the fermentation process was optimized,the titer of ginsenoside F1 could be increased by 900 times to 450. 5 mg·L-1. The high-efficiency UDP-glucose supply module in this study can provide reference for the construction of cell factories for production of saponin,and provide an important basis for further obtaining high-yield ginsenoside yeast cells.
Ginsenosides/metabolism*
;
Glucose
;
Panax
;
Saccharomyces cerevisiae/metabolism*
;
Uridine Diphosphate Glucose
3.Advances in studies on biotransformation of ginsensides.
Cong-Liang GUO ; Xiu-Ming CUI ; Xiao-Yan YANG ; Shuang WU
China Journal of Chinese Materia Medica 2014;39(20):3899-3904
Ginseng saponins are a type of important active substances in the ginseng genus plants. They have notable pharmacological activities of antineoplastic, neuroprotective, and hepatoprotective activities, which have been drawn more attention to obtain minor ginsenosides by all kinds of methods. In this review, we discussed the latest progress for enrichment of minor ginsenosides by biological transformation of major ginsenosides. At the same time, we have a brief outlook of the research at bioconversion of ginseng saponins.
Bacteria
;
metabolism
;
Biotransformation
;
Drugs, Chinese Herbal
;
chemistry
;
metabolism
;
Ginsenosides
;
chemistry
;
metabolism
;
Panax
;
chemistry
;
metabolism
4.Effects of Ginseng on the Metabolism of Enflurane and Methoxyflurane.
Young Joo LEE ; Carol B PANTUCK ; Chung Hyun CHO ; Eugene J PANTUCK
Yonsei Medical Journal 1987;28(4):261-265
Ginseng has been believed to be a powerful tonic by oriental people for a long time and is one of the most popular folk medicine in oriental countries. Intraperitoneal injection of ginseng into rats and mice has been reported to Increase the rates of hepatic RNA and protein synthesis, increase proliforation of rough RES of liver, and enhance alcohol metabolism. We have carried out a study to see the effects of red ginseng powder and extract on in vivo and in vitro metabolism of enflurane and methoxyflurane in male Fisher 344 rats. Red ginseng powder was dissolved in deionized water and dosed for two weeks ad libitum in rats. Hepatic microsomes were prepared and oxidative defluorination of enflurane and methoxyflurane were measured in vitro. Using red ginseng extract, studies were done of both acute and chronic treatment in rats. In chronic experiments, they were dosed with several dosages three times a day for three days; on the fourth day enflurane was administered i.p. and one hour later fluoride levels were mesured in plasma and hepatic microsomes were prepared for in vitro studies as above. In the acute experiment enflurane was administered intraperitoneally eighteen hours after single oral dosage of ginseng and plasma defluorination was measured. There were no statistically significant differences in hepatic microsomal cytochrome P-450 content or defluorination of enflurane and methoxyflurane between control and experimental groups using either red ginseng extract or powder. The results showed that ginseng ingestion did not affect the metabolism of enflurane and methoxyflurane.
Animal
;
Enflurane/metabolism*
;
Male
;
Methoxyflurane/metabolism*
;
Panax/metabolism*
;
Plants, Medicinal*
;
Rats
;
Rats, Inbred F344
5.Screening and identification of indoleacetic acid producing endophytic bacterium in Panax ginseng.
Yun JIANG ; Lei TIAN ; Chang-qing CHEN ; Guan-jun ZHANG ; Tong LI ; Jing-xiu CHEN ; Xue WANG
China Journal of Chinese Materia Medica 2015;40(2):213-217
Endophytic bacteria which was producing indoleacetic acid was screened from Panax ginseng by using the Salkowski method. The active strain was also tested for its ability of nitrogen fixation by using the Ashby agar plates, the PKV plates and quantitative analysis of Mo-Sb-Ascrobiology acid colorimetry was used to measure its ability of phosphate solubilization, for its ability of potassium solubilization the silicate medium and flame spectrophotometry was used, for its ability of producing siderophores the method detecting CAS was used, for its ability of producing ACC deaminase the Alpha ketone butyric acid method was applied. And the effect on promoting growth of seed by active strain was tested. The results showed that the indoleacetic acid producing strain of JJ5-2 was obtained from 118 endophytes, which the content of indoleacetic acid was 10.2 mg x L(-1). The JJ5-2 strain also had characteristics of phosphate and potassium solubilization, nitrogen fixation, producing siderophores traits, and the promoting germination of ginseng seeds. The JJ5-2 strain was identified as Bacillus thuringiensis by analyzing morphology, physiological and biochemical properties and 16S rRNA gene sequences.
Bacteria
;
isolation & purification
;
metabolism
;
Endophytes
;
isolation & purification
;
metabolism
;
Indoleacetic Acids
;
metabolism
;
Panax
;
microbiology
6.Biotransformation in vivo/vitro and bioactive properties of rare ginsenoside IH901.
Yuxing TONG ; Zhizhong ZHENG ; Qingxuan TONG ; Yi LIN ; Yanlin MING
Chinese Journal of Biotechnology 2012;28(6):684-695
Recent metabolomics research revealed a new ginseng ginsenoside IH901 that is synthesized by intestinal microbial transformation in oral administration of ginseng. IH901 shows various biological activities, including anti-tumor, anti-inflammatory, anti-diabetic, and anti-aging. In recent years, great effort has been made to prepare IH901 by microbial and enzymatic transformation in a large scale. In this paper, we reviewed the biotransformation pathways both in vivo and in vitro and bioactive properties of rare ginsenoside IH901.
Biotransformation
;
Ginsenosides
;
metabolism
;
pharmacokinetics
;
Humans
;
Intestines
;
metabolism
;
microbiology
;
Panax
;
chemistry
;
Sapogenins
;
metabolism
7.Mitigative effect of micribial degradation on autotoxicity of Panax ginseng.
Yong LI ; Qi-Liang LONG ; Wan-Long DING ; Dong-Yue ZHAO
China Journal of Chinese Materia Medica 2014;39(15):2868-2872
Continuously cropping obstacle restricts ginseng production and rational use of land resource severely, and autotoxicity is one of the most important factors. In our previous work, ginseng autotoxin degrading bacteria were isolated, in the present re- search, plate culturing method and traditional physiological and biochemical method were used to analyze biological indices and protective enzyme activities, in order to elucidate the mitigative effect of autotoxin degrading bacteria on autotoxicity of P. ginseng. Results indicated that, except for palmitic acid, autotoxicity of benzonic acid, diisobutyl phthalate, diisobutyl succinate, and 2,2-bis (4- hydroxyphenyl) propane on the growth of ginseng seeds was significantly alleviated after autotoxins degrading bacteria was inoculated, and which have no evident difference with control. Except for benzoic acid, enzyme activity of SOD, POD and CAT in other autotoxin degrading treatments decreased significantly. The present research showed that, microbial degradation could alleviate the autotoxicity of autotoxins on ginseng seeds effectively, and which will be helpful for the resolution of ginseng continuously cropping obstacle problem.
Bacteria
;
metabolism
;
Panax
;
enzymology
;
growth & development
;
metabolism
;
microbiology
;
Toxins, Biological
;
metabolism
8.Effects of acid and alkali stress on ginsenoside content and histochemical localization of ginsenoside in adventitious root of Panax ginseng.
Tie-Jun LI ; Mei-Lan LIAN ; Chun-Hui SHAO ; Dan YU ; Xuan-Chun PIAO
China Journal of Chinese Materia Medica 2013;38(24):4277-4280
To investigate the effect of acid and alkali stress on ginsenoside content of Panax ginseng, adventitious roots culture in bioreactors were incubated for 30 d and pH value was adjusted. Ginsenoside content increased by reducing or raising the pH in culture medium, the muxium ginsenoside content was determined on the 5th days after acid treatment and on the 7th days after alkali treatment. The result of histochemical localization of ginsenoside revealed that the red color from light to dark were found in the adventitious root tissue, and ginsenoside mainly located in the pericycle cells where appeared the dark red color.
Ginsenosides
;
metabolism
;
Hydrogen-Ion Concentration
;
Panax
;
metabolism
;
physiology
;
Plant Roots
;
metabolism
;
Stress, Physiological
;
Time Factors
9.Physiological and biochemical mechanisms of brassinosteroid in improving anti-cadmium stress ability of Panax notoginseng.
Gao-Yu LIAO ; Zheng-Qiang JIN ; Lan-Ping GUO ; Ya-Meng LIN ; Zi-Xiu ZHENG ; Xiu-Ming CUI ; Ye YANG
China Journal of Chinese Materia Medica 2023;48(6):1483-1490
In this study, the effect of brassinosteroid(BR) on the physiological and biochemical conditions of 2-year-old Panax notoginseng under the cadmium stress was investigated by the pot experiments. The results showed that cadmium treatment at 10 mg·kg~(-1) inhibited the root viability of P. notoginseng, significantly increased the content of H_2O_2 and MDA in the leaves and roots of P. noto-ginseng, caused oxidative damage of P. notoginseng, and reduced the activities of SOD and CAT. Cadmium stress reduced the chlorophyll content of P. notoginseng, increased leaf F_o, reduced F_m, F_v/F_m, and PIABS, and damaged the photosynthesis system of P. notoginseng. Cadmium treatment increased the soluble sugar content of P. notoginseng leaves and roots, inhibited the synthesis of soluble proteins, reduced the fresh weight and dry weight, and inhibited the growth of P. notoginseng. External spray application of 0.1 mg·L~(-1) BR reduced the H_2O_2 and MDA content in P. notoginseng leaves and roots under the cadmium stress, alleviated cadmium-induced oxidative damage to P. notoginseng, improved the antioxidant enzyme activity and root activity of P. notoginseng, increased the content of chlorophyll, reduced the F_o of P. notoginseng leaves, increased F_m, F_v/F_m, and PIABS, alleviated the cadmium-induced damage to the photosynthesis system, and improved the synthesis ability of soluble proteins. In summary, BR can enhance the anti-cadmium stress ability of P. notoginseng by regulating the antioxidant enzyme system and photosynthesis system of P. notoginseng under the cadmium stress. In the context of 0.1 mg·L~(-1) BR, P. notoginseng can better absorb and utilize light energy and synthesize more nutrients, which is more suitable for the growth and development of P. notoginseng.
Cadmium/metabolism*
;
Antioxidants/pharmacology*
;
Panax notoginseng
;
Brassinosteroids/pharmacology*
;
Chlorophyll/metabolism*
;
Plant Roots/metabolism*
;
Stress, Physiological
10.Effect of light intensity on growth, accumulation of ginsenosides, and expression of related enzyme genes of Panax quinquefolius.
Zi-Qi LIU ; Yi WANG ; Xiu WANG ; Na PENG ; Shan-Shan YANG ; Hui-Hui SHAO ; Xiao-Lin JIAO ; Wei-Wei GAO
China Journal of Chinese Materia Medica 2022;47(18):4877-4885
Appropriate light intensity is favorable for the photosynthesis, biomass accumulation, key enzyme activity, and secondary metabolite synthesis of medicinal plants. This study aims to explore the influence of light intensity on growth and quality of Panax quinquefolius. To be specific, sand culture experiment was carried out in a greenhouse under the light intensity of 40, 80, 120, and 160 μmol·m~(-2)·s~(-1), respectively. The growth indexes, photosynthetic characteristics, content of 6 ginsenosides of the 3-year-old P. quinquefolius were determined, and the expression of ginsenoside synthesis-related enzyme genes in leaves, main roots, and fibrous roots was determined. The results showed that the P. quinquefolius growing at 80 μmol·m~(-2)·s~(-1) light intensity had the most biomass and the highest net photosynthetic rate. The total biomass of P. quinquefolius treated with 120 μmol·m~(-2)·s~(-1) light intensity was slightly lower than that with 80 μmol·m~(-2)·s~(-1). The root-to-shoot ratio in the treatment with 120 μmol·m~(-2)·s~(-1) light intensity was up to 6.86, higher than those in other treatments(P<0.05),and the ginsenoside content in both aboveground and underground parts of P. quinquefolius in this treatment was the highest, which was possibly associated with the high expression of farnesylpyrophosphate synthase(FPS), squalene synthase(SQS), squalene epoxidase(SQE), oxidosqualene cyclase(OSC), dammarenediol-Ⅱ synthase(DS), and P450 genes in leaves and SQE and DS genes in main roots. In addition, light intensities of 120 and 160 μmol·m~(-2)·s~(-1) could promote PPD-type ginsenoside synthesis in leaves by triggering up-regulation of the expression of upstream ginsenoside synthesis genes. The decrease in underground biomass accumulation of the P. quinquefolius grown under weak light(40 μmol·m~(-2)·s~(-1)) and strong light(160 μmol·m~(-2)·s~(-1)) was possibly attributed to the low net photosynthetic rate, stomatal conductance, and transpiration rate in leaves. In the meantime, the low expression of SQS, SQE, OSC, and DS genes in the main roots might led to the decrease in ginsenoside content. However, there was no significant correlation between the ginsenoside content and the expression of synthesis-related genes in the fibrous roots of P. quinquefolius. Therefore, the light intensity of 80 and 120 μmol·m~(-2)·s~(-1) is beneficial to improving yield and quality of P. quinquefolius. The above findings contributed to a theoretical basis for reasonable shading in P. quinquefolius cultivation, which is of great significance for improving the yield and quality of P. quinquefolius through light regulation.
Farnesyl-Diphosphate Farnesyltransferase/metabolism*
;
Ginsenosides
;
Panax/metabolism*
;
Plant Roots/metabolism*
;
Sand
;
Squalene Monooxygenase