1.Excellent appearance of Dao-di Ginseng Radix et Rhizoma and interaction mechanism between genetic and environmental factors: a review.
Hong-Hong JIAO ; Lu-Qi HUANG ; Yuan YUAN
China Journal of Chinese Materia Medica 2023;48(12):3125-3131
Dao-di medicinal materials produced in a specific environment always present excellent appearance and high quality. Because of the unique appearance, Ginseng Radix et Rhizoma is regarded as a paradigm in the research on excellent appearance. This paper systematically summarized the research progress in the genetic and environmental factors influencing the formation of the excellent appearance of Ginseng Radix et Rhizoma, aiming to provide reference for the quality improvement of Ginseng Radix et Rhizoma and the scientific connotation of Dao-di Chinese medicinal materials. The Ginseng Radix et Rhizoma with high quality generally has a robust and long rhizome, a large angle between branch roots, and the simultaneous presence of a robust basal part of rhizome, adventitious roots, rhizome bark with circular wrinkles, and fibrous roots with pearl points. The cultivated and wild Ginseng Radix et Rhizoma have significant differences in the appearance and no significant difference in the population genetic diversity. The differences in the appearance are associated with cell wall modification, transcriptional regulation of genes involved in plant hormone transduction, DNA methylation, and miRNA regulation. The rhizosphere soil microorganisms including Fusarium and Alternaria, as well as the endophytes Trichoderma hamatum and Nectria haematococca, may be the key microorganisms affecting the growth and development of Panax ginseng. Cultivation mode, variety, and root exudates may be the main factors influencing the stability of rhizosphere microbial community. Ginsenosides may be involved in the formation of the excellent appearance. However, most of the available studies focus on the partial or single factors in the formation of Dao-di medicinal materials, ignoring the relationship within the complex ecosystems, which limits the research on the formation mechanism of Dao-di medicinal materials. In the future, the experimental models for the research involving genetic and environmental factors should be established and mutant materials should be developed to clarify the internal relationship between factors and provide scientific support for the research on Dao-di medicinal materials.
Alternaria
;
Microbiota
;
Panax/genetics*
;
Rhizome
2.Construction of cell factories for high production of ginsenoside Rh_2 in Saccharomyces cerevisiae.
Yu-Song SHI ; Dong WANG ; Rong-Sheng LI ; Xue-Li ZHANG ; Zhu-Bo DAI
China Journal of Chinese Materia Medica 2022;47(3):651-658
Ginsenoside Rh_2 is a rare active ingredient in precious Chinese medicinal materials such as Ginseng Radix et Rhizoma, Notoginseng Radix et Rhizoma, and Panacis Quinquefolii Radix. It has important pharmacological activities such as anti-cancer and improving human immunity. However, due to the extremely low content of ginsenoside Rh_2 in the source plants, the traditional way of obtaining it has limitations. This study intended to apply synthetic biological technology to develop a cell factory of Saccharomyces cerevisiae to produce Rh_2 by low-cost fermentation. First, we used the high protopanaxadiol(PPD)-yielding strain LPTA as the chassis strain, and inserted the Panax notoginseng enzyme gene Pn1-31, together with yeast UDP-glucose supply module genes[phosphoglucose mutase 1(PGM1), α-phosphoglucose mutase(PGM2), and uridine diphosphate glucose pyrophosphorylase(UGP1)], into the EGH1 locus of yeast chromosome. The engineered strain LPTA-RH2 produced 17.10 mg·g~(-1) ginsenoside Rh_2. This strain had low yield of Rh_2 while accumulated much precursor PPD, which severely restricted the application of this strain. In order to further improve the production of ginsenoside Rh_2, we strengthened the UDP glucose supply module and ginsenoside Rh_2 synthesis module by engineered strain LPTA-RH2-T. The shaking flask yield of ginsenoside Rh_2 was increased to 36.26 mg·g~(-1), which accounted for 3.63% of the dry weight of yeast cells. Compared with those of the original strain LPTA-RH2, the final production and the conversion efficiency of Rh_2 increased by 112.11% and 65.14%, respectively. This study provides an important basis for further obtaining the industrial-grade cell factory for the production of ginsenoside Rh_2.
Fermentation
;
Ginsenosides
;
Humans
;
Panax/genetics*
;
Panax notoginseng
;
Saccharomyces cerevisiae/genetics*
;
Uridine Diphosphate Glucose
3.Evaluation of genetic diversity of ginseng fruit color germplasm resources: based on SSR analysis.
Ping QIAO ; Yi-Heng WANG ; Jia-Hui SUN ; Chuan-Zhi KANG ; Lan-Ping GUO ; Lu-Qi HUANG
China Journal of Chinese Materia Medica 2022;47(8):2158-2164
Illumina Xten was employed for shallow sequencing of Panax ginseng(ginseng) samples, MISA for screening of SSR loci, and Primer 3 for primer design. Polymorphic primers were screened from 180 primers. From the successfully amplified polymorphic primers, 15 primers which featured clear peak shape, good polymorphism, and ease of statistics were selected and used to evaluate the genetic diversity and germplasm resources of 36 ginseng accessions with different fruit colors from Jilin province. The results showed that red-fruit ginseng population had high genetic diversity with the average number of alleles(N_a) of 1.031 and haploid genetic diversity(h) of 0.172. The neighbor-joining cluster analysis demonstrated that the germplasms of red-fruit and yellow-fruit ginseng populations were obviously intermixed, and pick-fruit ginseng germplasms clustered into a single clade. The results of STRUCTURE analysis showed high proportion of single genotype in pick-fruit ginseng germplasm and abundant genotypes in red-fruit and yellow-fruit ginseng germplasms with obvious germplasm mixing. AMOVA revealed that genetic variation occurred mainly within populations(62.00%, P<0.001), and rarely among populations(39%, P<0.001), but homogenization was obvious among different populations. In summary, pink-fruit ginseng population may contain rare genotypes, which is the basis for breeding of high-quality high-yield, and multi-resistance varieties, genetic improvement of varieties, and sustainable development and utilization of ginseng germplasm resources.
Fruit/genetics*
;
Genetic Variation
;
Microsatellite Repeats
;
Panax/genetics*
;
Plant Breeding
4.Transcriptome profiling and analysis of Panax japonicus var. major.
Shao-peng ZHANG ; Jian JIN ; Bing-xiong HU ; Ya-yun WU ; Qi YAN ; Wan-yong ZENG ; Yong-lian ZHENG ; Zhang XI-FENG ; Ping CHEN
China Journal of Chinese Materia Medica 2015;40(11):2084-2089
The rhizome of Panax japonicus var. major have been used as the natural medicinal agent by Chinese traditional doctors for more than thousand years. Most of the therapeutic effects of P. japonicus var. major had been reported due to the presence of tetracyclic or pentacyclic triterpene saponins. In this study, Illumina pair-end RNA-sequencing and de novo splicing were done in order to understand the pathway of triterpenoid saponins in this species. The valid reads data of 15. 6 Gb were obtained. The 62 240 unigenes were finally obtained by de novo splicing. After annotation, we discovered 19 unigenes involved in ginsenoside backbone biosynthesis. Additionally, 69 unigenes and 18 unigenes were predicted to have potential function of cytochrome P450 and UDP-glycosyltransferase based on the annotation results, which may encode enzymes responsible for ginsenoside backbone modification. This study provides global expressed datas for P. japonicus var. major, which will contribute significantly to further genome-wide research and analysis for this species.
Gene Expression Profiling
;
Panax
;
genetics
;
Saponins
;
biosynthesis
;
Sequence Analysis, RNA
5.Synergistic effect on biosynthesis of Panax notoginseng saponins by overexpressing a transcription factor PnbHLH and RNA interference of cycloartenol synthase gene.
Li JIANG ; Yi-Lin YU ; Min JIANG ; Xiu-Ming CUI ; Di-Qiu LIU ; Feng GE
China Journal of Chinese Materia Medica 2021;46(1):94-102
This study cloned the transcription factor gene PnbHLH which held an open reading frame of 966 bp encoding 321 amino acids. This study constructed the overexpression vector of transcription factor PnbHLH of Panax notoginseng. The combination of PnbHLH overexpression and RNAi of the key enzyme gene PnCAS involved in the phytosterol biosynthesis was achieved in P. notoginseng cells, thus exploring the biosynthetic regulation of P. notoginseng saponins(PNS) by the synergistic effect of PnbHLH overexpression and PnCAS RNAi. The results showed that the PnbHLH transcription factor interacted with the promoters of key enzyme genes PnDS, PnSS and PnSE in the biosynthetic pathway of PNS, and then regulated the expression levels of key enzyme genes and affected the biosynthesis of saponins indirectly. Further study indicated that the synergistic effect of PnbHLH overexpression and PnCAS RNAi was a more effective approach to regulate the biosynthesis of saponins. Compared with the wild type and PnCAS RNAi cells of P. notoginseng, the contents of total saponins and monomeric saponins(Rd, Rb_1, Re, Rg_1 and R_1) were increased to some extent in the cell lines of PnbHLH overexpression and PnCAS RNAi. This indicated that the two ways of forward regulation and reverse regulation of saponin biosynthesis showed superposition effect. This study explored a more rational and efficient regulation strategy of PNS biosynthesis based on the advantages of multi-point regulation of transcription factors as well as the down-regulation of by-product synthesis of saponins.
Intramolecular Transferases
;
Panax notoginseng
;
RNA Interference
;
Saponins
;
Transcription Factors/genetics*
6.Diversity of arbuscular mycorrhizal fungi of Panax quinquefolius cultivated in Shandong province.
Zhi-Fang RAN ; Xiao-Tong YANG ; Rui LI ; Jie ZHOU ; Yong-Qing ZHANG ; Lan-Ping GUO
China Journal of Chinese Materia Medica 2021;46(16):4103-4110
In this study, the colonization, diversity and relative abundance of arbuscular mycorrhizal fungi(AMF) in the roots of Panax quinquefolius in different habitats of Shandong province were analyzed by staining-microscopy and high-throughput sequencing. The data were analyzed by bioinformatics tools and statistical software. The results showed that the roots of P. quinquefolius in different habitats were colonized by AMF with different rates and intensities. The AMF in roots of P. quinquefolius belong to three genera, three families, three orders, one class and one phylum. At the level of order, the AMF mainly included Paraglomerales(52.48%), Glomerales(25.60%) and Archaeosporales(3.08%). At the level of family, the AMF were dominated by Paraglomeraceae(52.48%), Glomeraceae(18.94%) and Claroideoglomeraceae(3.05%). At the level of genus, Paraglomus(51.46%), Glomus(20.01%) and Claroideoglomus(3.52%) accounted for a large proportion, of which Paraglomus and Glomus were dominant. Cluster analysis showed that the AMF in roots of P. quinquefolius with close geographical locations could be clustered together. In this study, the diversity and dominant germplasm resources of AMF in roots of P. quinquefolius cultivated in the main producing areas were identified, which provi-ded basic data for revealing the quality formation mechanism of P. quinquefolius medicinal materials from the perspective of environment.
Fungi
;
Glomeromycota
;
Humans
;
Mycorrhizae/genetics*
;
Panax
;
Plant Roots
;
Soil Microbiology
7.DNA barcoding identification of Ginseng Radix et Rhizoma and Panacis Quinquefolii Radix based on trnL-trnF sequences.
Xiao-na SONG ; Xuan GU ; Chun-sheng LIU ; Yan-peng LI ; Xue ZHANG ; Yuan ZHANG ; Yong LIU ; Chang-hua MA
China Journal of Chinese Materia Medica 2015;40(10):1914-1918
To optimize indices of molecular identification for authentication of Ginseng Radix et Rhizoma and Panacis Quinquefolii Radix, four indices, including sequence similarity, specific positions, genetic distance and phylogenetic tree, were compared based on trnL-trnF sequences. Total DNA was extracted from Ginseng Radix et Rhizoma and Panacis Quinquefolii Radix, and trL-trnF sequences were amplified and sequenced. Sequence similarity was calculated by BLAST analysis. Specific positions were compared by DNAman software. Genetic distance and phylogenetic tree were analyzed by Mega software. The results showed that the inter-specific and intra-specific similarity of P. ginseng and P. quinquefolius respectively was 100% and 99. 6%. There were four specific positions at G153A, T463A, C732G and T818C. The inter-specific genetic distance (0) of trL-trnF sequences was lower than intra-specific genetic distance (0. 004). P. ginseng can be distinguished from P. quinquefolius based on the phylogenetic tree. It is concluded that Ginseng Radix et Rhizoma and Panacis Quinquefolii Radix can be authenticated by identification indices of sequence similarity, specific positions, genetic distance and phylogenetic tree. Index of specific positions based on trnL-trnF sequences is the most efficient index to authenticate Ginseng Radix et Rhizoma and Panacis Quinquefolii Radix.
Chloroplasts
;
genetics
;
DNA Barcoding, Taxonomic
;
methods
;
Panax
;
classification
;
genetics
;
Phylogeny
;
Plant Proteins
;
genetics
;
Rhizome
;
classification
;
genetics
8.Expression of saponin biosynthesis related genes in different tissues of .
Kang-Yu WANG ; Wei-Can LIU ; Mei-Ping ZHANG ; Ming-Zhu ZHAO ; Yan-Fang WANG ; Li LI ; Chun-Yu SUN ; Ke-Xin HU ; Yue-Yi CONG ; Yi WANG
China Journal of Chinese Materia Medica 2018;43(1):65-71
The relationship between saponin content of in different parts of the organization and expression of ginsenoside biosynthesis related gene was obtained by the correlation analysis between saponin content and gene expression. The 14 tissue parts of were studied, six saponins in Samples (ginsenoside Rg₁, Re, Rb₁, Rc, Rb₂ and Rd), group saponins and total saponins were determined by high performance liquid chromatography and vanillin-sulfuric acid colorimetric method. Simultaneously, the expression levels of 7 ginsenoside biosynthesis related genes ( and ) in different tissues of were determined by Real-time fluorescence quantitative PCR. Although 7 kinds of ginsenoside biosynthesis related enzyme gene in the involved in ginsenoside synthesis, the expression of and P450 genes had no significant effect on the content of monosodium saponins, grouping saponins and total saponins, and had significant or extremely significant on the contents of single saponins Re, Rg1, Rb1, Rd, group saponin PPD and PPT, total saponin TMS and total saponin TS (<0.05 or <0.01). The biosynthesis of partial saponins, grouping saponins and total saponins in was affected by the interaction of multiple enzyme genes in the saponin synthesis pathway, the content of saponins in different tissues of was determined by the differences in the expression of key enzymes in the biosynthetic pathway. Therefore, this study further clarified that and was the key enzyme to control the synthesis of saponins in by correlation analysis, the biosynthesis of ginsenosides in was regulated by these five kind of enzymes in cluster co-expression of interaction mode.
Biosynthetic Pathways
;
Chromatography, High Pressure Liquid
;
Ginsenosides
;
biosynthesis
;
genetics
;
Panax
;
genetics
;
Plant Roots
;
Saponins
;
biosynthesis
;
genetics
9.Cloning and expression analysis of GGPPS gene from Panax notoginseng.
Dan-dan MIN ; Mei-qiong TANG ; Gang LI ; Xiao-sheng QU ; Jian-hua MIAO
China Journal of Chinese Materia Medica 2015;40(11):2090-2095
According to the transcriptome dataset of Panax notoginseng, the key geranylgeranyl pyrophosphate synthase gene (GGPPS) in terpenoid backbone biosynthesis was selected to be cloned. Using specific primer pairs combining with RACE (rapid amplification of cDNA ends) technique, the full-length cDNA sequence with 1 203 bp, which containing a 1 035 bp open reading frame, was cloned and named as PnGGPPS. The corresponding full-length DNA sequence contained 2 370 bp, consisted of 1 intron and 2 exons. The deduced protein PnGGPPS contained 344 amino acids and shared more than 73% identity with GGPPS from Ricinus communis and Salvia miltiorrhiza. PnGGPPS also had specific Aspartic acid enrichment regions and other conserved domains, which belonged to the Isoprenoid-Biosyn-C1 superfamily. The quantitative real-time PCR showed that PnGGPPS expressed in different tissues of 1, 2, 3 years old root, stem, leaf and 3 years old flower, and the expression level in 3 years old leaf was significant higher than that in other organs, which suggested that it might not only be involved in the regulation of the growth and development, but also be associated with the biosynthesis of chlorophyll and carotenoids, the development of chloroplast, the shade habit and the quality formation of P. notoginseng.
Cloning, Molecular
;
Computational Biology
;
Geranylgeranyl-Diphosphate Geranylgeranyltransferase
;
genetics
;
Panax notoginseng
;
genetics
;
Real-Time Polymerase Chain Reaction
10.Cloning and expression analysis of U6 promoters in Panax quinquefolius.
Jing-Xian CHEN ; Chao LU ; Guo-Xia WANG ; Chun-Ge LI ; Yu-Hua LI ; Fang-Yi SU ; Chen-Ying WANG ; Yao-Guang ZHANG
China Journal of Chinese Materia Medica 2023;48(11):2931-2939
The U6 promoter is an important element driving sgRNA transcription in the CRISPR/Cas9 system. Seven PqU6 promo-ter sequences were cloned from the gDNA of Panax quinquefolium, and the transcriptional activation ability of the seven promoters was studied. In this study, seven PqU6 promoter sequences with a length of about 1 300 bp were cloned from the adventitious roots of P. quinquefolium cultivated for 5 weeks. Bioinformatics tools were used to analyze the sequence characteristics of PqU6 promoters, and the fusion expression vectors of GUS gene driven by PqU6-P were constructed. Tobacco leaves were transformed by Agrobacterium tumefaciens-mediated method for activity detection. The seven PqU6 promoters were truncated from the 5'-end to reach 283, 287, 279, 289, 295, 289, and 283 bp, respectively. The vectors for detection of promoter activity were constructed with GUS as a reported gene and used to transform P. quinquefolium callus and tobacco leaves. The results showed that seven PqU6 promoter sequences(PqU6-1P to PqU6-7P) were cloned from the gDNA of P. quinquefolium, with the length ranged from 1 246 bp to 1 308 bp. Sequence comparison results showed that the seven PqU6 promoter sequences and the AtU6-P promoter all had USE and TATA boxes, which are essential elements affecting the transcriptional activity of the U6 promoter. The results of GUS staining and enzyme activity test showed that all the seven PqU6 promoters had transcriptional activity. The PqU6-7P with a length of 1 269 bp had the highest transcriptional activity, 1.31 times that of the positive control P-35S. When the seven PqU6 promoters were truncated from the 5'-end(PqU6-1PA to PqU6-7PA), their transcriptional activities were different in tobacco leaves and P. quinquefolium callus. The transcriptional activity of PqU6-7PA promoter(283 bp) was 1.59 times that of AtU6-P promoter(292 bp) when the recipient material was P. quinquefolium callus. The findings provide more ideal endogenous U6 promoters for CRISPR/Cas9 technology in ginseng and other medicinal plants.
Panax/genetics*
;
Promoter Regions, Genetic
;
Agrobacterium tumefaciens/genetics*
;
Computational Biology
;
Cloning, Molecular